1
|
Tönißen K, Franz GP, Albrecht E, Lutze P, Bochert R, Grunow B. Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1527-1544. [PMID: 38733450 PMCID: PMC11286731 DOI: 10.1007/s10695-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.
Collapse
Affiliation(s)
- Katrin Tönißen
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - George P Franz
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Working Group Muscle-Fat Crosstalk, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Philipp Lutze
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Institute of Fisheries, Research Station Aquaculture, Born, Germany
| | - Bianka Grunow
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
2
|
Zhang WW, Weng ZY, Wang X, Yang Y, Li D, Wang L, Liu XC, Meng ZN. Genetic mechanism of body size variation in groupers: Insights from phylotranscriptomics. Zool Res 2024; 45:314-328. [PMID: 38485502 PMCID: PMC11017090 DOI: 10.24272/j.issn.2095-8137.2023.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 03/19/2024] Open
Abstract
Animal body size variation is of particular interest in evolutionary biology, but the genetic basis remains largely unknown. Previous studies have shown the presence of two parallel evolutionary genetic clusters within the fish genus Epinephelus with evident divergence in body size, providing an excellent opportunity to investigate the genetic basis of body size variation in vertebrates. Herein, we performed phylotranscriptomic analysis and reconstructed the phylogeny of 13 epinephelids originating from the South China Sea. Two genetic clades with an estimated divergence time of approximately 15.4 million years ago were correlated with large and small body size, respectively. A total of 180 rapidly evolving genes and two positively selected genes were identified between the two groups. Functional enrichment analyses of these candidate genes revealed distinct enrichment categories between the two groups. These pathways and genes may play important roles in body size variation in groupers through complex regulatory networks. Based on our results, we speculate that the ancestors of the two divergent groups of groupers may have adapted to different environments through habitat selection, leading to genetic variations in metabolic patterns, organ development, and lifespan, resulting in body size divergence between the two locally adapted populations. These findings provide important insights into the genetic mechanisms underlying body size variation in groupers and species differentiation.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhuo-Ying Weng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xi Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong SAR 999077, China
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Duo Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Le Wang
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, Singapore City 117604, Singapore
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai, Guangdong 519000, China
| | - Zi-Ning Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai, Guangdong 519000, China. E-mail:
| |
Collapse
|
3
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Qi Z, Xu Y, Liu Y, Zhang Q, Wang Z, Mei J, Wang D. Transcriptome analysis of largemouth bass (Micropterus salmoides) challenged with LPS and polyI:C. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108534. [PMID: 36649809 DOI: 10.1016/j.fsi.2023.108534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Largemouth bass (Micropterus salmoides) is a worldwide commercially important aquatic species. In recent years, pathogenic diseases cause great economic losses and hinder the industry of largemouth bass. To further understand the immune response against pathogens in largemouth bass, splenic transcriptome libraries of largemouth bass were respectively constructed at 12 h post-challenged with phosphate-buffered saline (PBS), lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (polyI:C) by using RNA sequencing technology (RNA-seq). RNA libraries were constructed using 9 RNA splenic samples isolated from three biological replicates of the three groups and sequenced on the DNBSEQ platform. A total number of 86,306 unigenes were obtained. Through pairwise comparisons among the three groups, we identified 11,295 different expression genes (DEGs) exhibiting significant differences at the transcript level. There were 7, 7, and 13 signal pathways were significantly enriched in LPS-PBS comparison, polyI:C-PBS comparison, and LPS-polyI:C comparison, respectively, indicating that the immune response to different pathogens was distinct in largemouth bass. To the best of our knowledge, this is the first report on the immune response of largemouth bass against different pathogen-associated molecular patterns (PAMPs) stimuli using transcriptomic analysis. Our results provide a valuable resource and new insights to understanding the immune characteristics of largemouth bass against different pathogens.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| | - Yang Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yuhao Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Dezhong Wang
- Sheyang Kangyu Aquatic Products Technology Co., Ltd, Yancheng, Jiangsu Province, 224300, China
| |
Collapse
|
5
|
Anastasiadi D, Shao C, Chen S, Piferrer F. Footprints of global change in marine life: Inferring past environment based on DNA methylation and gene expression marks. Mol Ecol 2020; 30:747-760. [PMID: 33372368 DOI: 10.1111/mec.15764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Ocean global warming affects the distribution, life history and physiology of marine life. Extreme events, like marine heatwaves, are increasing in frequency and intensity. During sensitive stages of early fish development, the consequences may be long-lasting and mediated by epigenetic mechanisms. Here, we used European sea bass as a model to study the possible long-lasting effects of a marine heatwave during early development. We measured DNA methylation and gene expression in four tissues (brain, muscle, liver and testis) and detected differentially methylated regions (DMRs). Six genes were differentially expressed and contained DMRs three years after exposure to increased temperature, indicating direct phenotypic consequences and representing persistent changes. Interestingly, nine genes contained DMRs around the same genomic regions across tissues, therefore consisting of common footprints of developmental temperature in environmentally responsive loci. These loci are, to our knowledge, the first metastable epialleles (MEs) described in fish. MEs may serve as biomarkers to infer past life history events linked with persistent consequences. These results highlight the importance of subtle phenotypic changes mediated by epigenetics to extreme weather events during sensitive life stages. Also, to our knowledge, it is the first time the molecular effects of a marine heatwave during the lifetime of individuals are assessed. MEs could be used in surveillance programs aimed at determining the footprints of climate change on marine life. Our study paves the way for the identification of conserved MEs that respond equally to environmental perturbations across species. Conserved MEs would constitute a tool of assessment of global change effects in marine life at a large scale.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, China
| | - Songlin Chen
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, China
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
6
|
Molecular assessment and transcriptome profiling of wild fish populations of Oryzias mekongensis and O. songkhramensis (Adrianichthyidae: Beloniformes) from Thailand. PLoS One 2020; 15:e0242382. [PMID: 33211755 PMCID: PMC7676673 DOI: 10.1371/journal.pone.0242382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/01/2020] [Indexed: 11/19/2022] Open
Abstract
Among the fish of the genus Oryzias, two species are frequently used as model animals in biological research. In Thailand, Oryzias mekongensis is usually found in natural freshwater near the Mekong Basin in the northeast region, while O. songkhramensis inhabits the Songkhram Basin. For differential morphological identification, the coloured bands on the dorsal and ventral margins of the caudal fin are used to distinguish O. mekongensis from O. songkhramensis. However, these characteristics are insufficient to justify species differentiation, and little molecular evidence is available to supplement them. This study aimed to investigate the molecular population and transcriptome profiles of adult O. mekongensis and O. songkhramensis. In the molecular tree based on cytochrome b sequences, O. mekongensis exhibited four clades that were clearly distinguished from O. songkhramensis. Clade 1 of the O. mekongensis population was close to the Mekong River and lived in the eastern portion of the upper northeast region. Clade 2 was far from the Mekong River and inhabited the middle region of the Songkhram River. Clade 3 was positioned to the west of the Songkhram River, and clade 4 was to the south of the Songkhram River Basin. After RNA sequencing using an Illumina HiSeq 2500 platform, the gene category annotations hardly differentiated the species and were discussed in the text. Based on the present findings, population dispersal of these Oryzias species might be associated with geographic variations of the upper northeast region. Molecular genetics and transcriptome profiling might advance our understanding of the evolution of teleost fish.
Collapse
|