1
|
He J, Li J, Sun Y, Shen Y, Wei Q, Zhang D, Feng D, Wang P. Molecular Mechanism of Oil-Infused Silicone Preventing Mussel Biofouling. RESEARCH (WASHINGTON, D.C.) 2025; 8:0627. [PMID: 39995899 PMCID: PMC11848653 DOI: 10.34133/research.0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Marine biofouling causes severe economical and environmental challenges to marine industries and maritime activities. Biofouling prevention has emerged as one of the most pressing issues in water-related industries. Recently, the slippery liquid-infused porous surfaces (SLIPSs) have shown great potential for biofouling prevention across a broad spectrum of fouling organisms. However, our understanding of the mechanisms by which SLIPSs prevent biofouling remains limited. In this study, we discovered that oil-infused polydimethylsiloxane elastomer (i-PDMS), a silicone-based SLIPS variant, significantly inhibited the sensory responses of the fouling mussel Mytilopsis sallei, particularly at its sensory organ, the foot. Using bioinformatics and molecular biology analyses, we demonstrated that i-PDMS disrupts larval settlement of M. sallei by interfering with the mechanosensitive transient receptor potential melastatin-subfamily member 7 (TRPM7) channel, which is highly expressed in the foot during the settlement process. Furthermore, adhesion assays and molecular dynamics simulations revealed that the secreted foot proteins of the mussel are unable to effectively interact with the i-PDMS surface due to nanoscale fluctuations at the material interface. These findings enhance our understanding of how fouling organisms sense and adhere to surfaces and provide deeper insights into the antifouling mechanisms of SLIPS.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology,
Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiawei Li
- State Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology,
Chinese Academy of Sciences, Qingdao 266071, China
| | - Yihan Sun
- State Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology,
Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuanyuan Shen
- State Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology,
Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dun Zhang
- State Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology,
Chinese Academy of Sciences, Qingdao 266071, China
| | - Danqing Feng
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences,
Xiamen University, Xiamen 361102, China
| | - Peng Wang
- State Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology,
Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
2
|
He J, Wang Z, Wu Z, Chen L, Huang J. Silk Gland Factor 1 Plays a Pivotal Role in Larval Settlement of the Fouling Mussel Mytilopsis sallei. BIOLOGY 2024; 13:417. [PMID: 38927297 PMCID: PMC11200471 DOI: 10.3390/biology13060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Most fouling organisms have planktonic larval and benthic adult stages. Larval settlement, the planktonic-benthic transition, is the critical point when biofouling begins. However, our understanding of the molecular mechanisms of larval settlement is limited. In our previous studies, we identified that the AMP-activated protein kinase-silk gland factor 1 (AMPK-SGF1) pathway was involved in triggering the larval settlement in the fouling mussel M. sallei. In this study, to further confirm the pivotal role of SGF1, multiple targeted binding compounds of SGF1 were obtained using high-throughput virtual screening. It was found that the targeted binding compounds, such as NAD+ and atorvastatin, could significantly induce and inhibit the larval settlement, respectively. Furthermore, the qRT-PCR showed that the expression of the foot proteins' genes was significantly increased after the exposure to 10 μM NAD+, while the gene expression was significantly suppressed after the exposure to 10 μM atorvastatin. Additionally, the production of the byssus threads of the adults was significantly increased after the exposure to 10-20 μM of NAD+, while the production of the byssus threads was significantly decreased after the exposure to 10-50 μM of atorvastatin. This work will deepen our understanding of SGF1 in triggering the larval settlement in mussels and will provide insights into the potential targets for developing novel antifouling agents.
Collapse
Affiliation(s)
- Jian He
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China;
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zhixuan Wang
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (Z.W.); (Z.W.); (L.C.)
| | - Zhiwen Wu
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (Z.W.); (Z.W.); (L.C.)
| | - Liying Chen
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (Z.W.); (Z.W.); (L.C.)
| | - Jianfang Huang
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China;
| |
Collapse
|
3
|
Cheng J, Li S, Li X, Zhan A. Influence of calcium concentration on larval adhesion in a highly invasive fouling ascidian: From morphological changes to molecular mechanisms. MARINE POLLUTION BULLETIN 2024; 200:116119. [PMID: 38325201 DOI: 10.1016/j.marpolbul.2024.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Calcium ion (Ca2+) is involved in the protein-mediated larval adhesion of fouling ascidians, yet the effects of environmental Ca2+ on larval adhesion remain largely unexplored. Here, the larvae of fouling ascidian C. robusta were exposed to different concentrations of Ca2+. Exposures to low-concentration (0 mM and 5 mM) and high-concentration (20 mM and 40 mM) Ca2+ significantly decreased the adhesion rate of larvae, which was primarily attributed to the decreases in adhesive structure length and curvature. Changes in the expressions of genes encoding adhesion-, microvilli-, muscle contraction-, and collagen-related proteins provided a molecular-level explanation for adhesion rate reduction. Additionally, larvae likely prioritized their energy towards immunomodulation in response to Ca2+ stresses, ultimately leading to adhesion reduction. These findings advance our understanding of the influencing mechanisms of environmental Ca2+ on larval adhesion, which are expected to provide references for the development of precise antifouling strategies against ascidians and other fouling species.
Collapse
Affiliation(s)
- Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Qian Y, Yu Q, Zhang J, Han Y, Xie X, Zhu D. Identification of transient receptor potential channel genes from the swimming crab, Portunus Trituberculatus, and their expression profiles under acute temperature stress. BMC Genomics 2024; 25:72. [PMID: 38233779 PMCID: PMC10795286 DOI: 10.1186/s12864-024-09973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Temperature is an important environment factor that is critical to the survival and growth of crustaceans. However, the mechanisms by which crustaceans detect changes in temperature are still unclear. The transient receptor potential (TRP) channels are non-selective cation channels well known for properties in temperature sensation. However, comprehensive understandings on TRP channels as well as their temperature sensing functions are still lacking in crustaceans. RESULTS In this study, a total of 26 TRP genes were identified in the swimming crab, Portunus trituberculatus, which can be classified into TRPA, TRPC, TRPP, TRPM, TRPML, TRPN and TRPV. Tissue expression analysis revealed a wide distribution of these TRP genes in P. trituberculatus, and antennules, neural tissues, and ovaries were the most commonly expressed tissues. To investigate the responsiveness of TRP genes to the temperature change, 18 TRPs were selected to detect their expression after high and low temperature stress. The results showed that 12 TRPs showed induced gene expression in both high and low temperature groups, while 3 were down-regulated in the low temperature group, and 3 showed no change in expression in either group. CONCLUSIONS This study characterized the TRP family genes in P. trituberculatus, and explored their involvement in response to temperature stress. Our results will enhance overall understanding of crustacean TRP channels and their possible functions.
Collapse
Affiliation(s)
- Yichen Qian
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiaoling Yu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yaoyao Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xi Xie
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| | - Dongfa Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Liu X, Jin H, Xu G, Lai R, Wang A. Bioactive Peptides from Barnacles and Their Potential for Antifouling Development. Mar Drugs 2023; 21:480. [PMID: 37755093 PMCID: PMC10532818 DOI: 10.3390/md21090480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Barnacles, a prevalent fouler organism in intertidal zones, has long been a source of annoyance due to significant economic losses and ecological impacts. Numerous antifouling approaches have been explored, including extensive research on antifouling chemicals. However, the excessive utilization of small-molecule chemicals appears to give rise to novel environmental concerns. Therefore, it is imperative to develop new strategies. Barnacles exhibit appropriate responses to environmental challenges with complex physiological processes and unique sensory systems. Given the assumed crucial role of bioactive peptides, an increasing number of peptides with diverse activities are being discovered in barnacles. Fouling-related processes have been identified as potential targets for antifouling strategies. In this paper, we present a comprehensive review of peptides derived from barnacles, aiming to underscore their significant potential in the quest for innovative solutions in biofouling prevention and drug discovery.
Collapse
Affiliation(s)
- Xuan Liu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (H.J.); (G.X.); (R.L.)
| |
Collapse
|
6
|
He J, Wang P, Wang Z, Feng D, Zhang D. TRPM7-Mediated Ca2+ Regulates Mussel Settlement through the CaMKKβ-AMPK-SGF1 Pathway. Int J Mol Sci 2023; 24:ijms24065399. [PMID: 36982474 PMCID: PMC10049526 DOI: 10.3390/ijms24065399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
Many marine invertebrates have planktonic larval and benthic juvenile/adult stages. When the planktonic larvae are fully developed, they must find a favorable site to settle and metamorphose into benthic juveniles. This transition from a planktonic to a benthic mode of life is a complex behavioral process involving substrate searching and exploration. Although the mechanosensitive receptor in the tactile sensor has been implicated in sensing and responding to surfaces of the substrates, few have been unambiguously identified. Recently, we identified that the mechanosensitive transient receptor potential melastatin-subfamily member 7 (TRPM7) channel, highly expressed in the larval foot of the mussel Mytilospsis sallei, was involved in substrate exploration for settlement. Here, we show that the TRPM7-mediated Ca2+ signal was involved in triggering the larval settlement of M. sallei through the calmodulin-dependent protein kinase kinase β/AMP-activated protein kinase/silk gland factor 1 (CaMKKβ-AMPK-SGF1) pathway. It was found that M. sallei larvae preferred the stiff surfaces for settlement, on which TRPM7, CaMKKβ, AMPK, and SGF1 were highly expressed. These findings will help us to better understand the molecular mechanisms of larval settlement in marine invertebrates, and will provide insights into the potential targets for developing environmentally friendly antifouling coatings for fouling organisms.
Collapse
Affiliation(s)
- Jian He
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: (P.W.); (D.F.)
| | - Zhixuan Wang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (P.W.); (D.F.)
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
7
|
Johannesson K, Leder EH, André C, Dupont S, Eriksson SP, Harding K, Havenhand JN, Jahnke M, Jonsson PR, Kvarnemo C, Pavia H, Rafajlović M, Rödström EM, Thorndyke M, Blomberg A. Ten years of marine evolutionary biology-Challenges and achievements of a multidisciplinary research initiative. Evol Appl 2023; 16:530-541. [PMID: 36793681 PMCID: PMC9923476 DOI: 10.1111/eva.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Erica H. Leder
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Natural History MuseumUniversity of OsloOsloNorway
| | - Carl André
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Sam Dupont
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
- International Atomic Energy AgencyPrincipality of MonacoMonaco
| | - Susanne P. Eriksson
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
| | - Karin Harding
- Department of Biology and Environmental ScienceUniversity of GothenburgGothenburgSweden
| | - Jonathan N. Havenhand
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marlene Jahnke
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Per R. Jonsson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Charlotta Kvarnemo
- Department of Biology and Environmental ScienceUniversity of GothenburgGothenburgSweden
| | - Henrik Pavia
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marina Rafajlović
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Eva Marie Rödström
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Michael Thorndyke
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
- Department of Genomics Research in Ecology & Evolution in Nature (GREEN)Groningen Institute for Evolutionary Life Sciences (GELIFES)De Rijksuniversiteit GroningenGroningenThe Netherlands
| | - Anders Blomberg
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
8
|
Derby CD. The Crustacean Antennule: A Complex Organ Adapted for Lifelong Function in Diverse Environments and Lifestyles. THE BIOLOGICAL BULLETIN 2021; 240:67-81. [PMID: 33939945 DOI: 10.1086/713537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe crustacean first antenna, or antennule, has been an experimental model for studying sensory biology for over 150 years. Investigations have led to a clearer understanding of the functional organization of the antennule as an olfactory organ but also to a realization that the antennule is much more than that. Across the Crustacea, the antennules take on many forms and functions. As an example, the antennule of reptantian decapods has many types of sensilla, each with distinct structure and function and with hundreds of thousands of chemosensory neurons expressing hundreds of genes that code for diverse classes of receptor proteins. Together, these antennular sensilla represent multiple chemosensory pathways, each with its own central connections and functions. The antennule also has a diversity of sensors of mechanical stimuli, including vibrations, touch, water flow, and the animal's own movements. The antennule likely also detects other environmental cues, such as temperature, oxygen, pH, salinity, and noxious stimuli. Furthermore, the antennule is a motor organ-it is flicked to temporally and spatially sample the animal's chemo-mechanical surroundings-and this information is used in resolving the structure of chemical plumes and locating the odor source. The antennule is also adapted to maintain lifelong function in a changing environment. For example, it has specific secretory glands, grooming structures, and behaviors to stay clean and functional. Antennular sensilla and the annuli on which they reside are also added and replaced, leading to a complete turnover of the antennule over several molts. Thus, the antennule is a complex and dynamic sensory-motor integrator that is intricately engaged in most aspects of the lives of crustaceans.
Collapse
|
9
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
10
|
Kozma MT, Ngo-Vu H, Rump MT, Bobkov YV, Ache BW, Derby CD. Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics 2020; 21:649. [PMID: 32962631 PMCID: PMC7510291 DOI: 10.1186/s12864-020-07034-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.
Collapse
Affiliation(s)
- Mihika T Kozma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Matthew T Rump
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuriy V Bobkov
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
11
|
Kozma MT, Ngo-Vu H, Wong YY, Shukla NS, Pawar SD, Senatore A, Schmidt M, Derby CD. Comparison of transcriptomes from two chemosensory organs in four decapod crustaceans reveals hundreds of candidate chemoreceptor proteins. PLoS One 2020; 15:e0230266. [PMID: 32163507 PMCID: PMC7067487 DOI: 10.1371/journal.pone.0230266] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Crustaceans express genes for at least three classes of putative chemosensory proteins. These are: Ionotropic Receptors (IRs), derived from the heterotetrameric ionotropic glutamate receptors (iGluRs); Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several families of chemoreceptor channels; and Gustatory Receptor Like receptors (GRLs), ionotropic receptors that are homologues of Gustatory Receptors (GRs) of insects and are expressed sparingly in most crustaceans so far studied. IRs are typically numerically the most dominant of these receptor proteins in crustaceans and include two classes: co-receptor IRs, which are necessary for making a functional receptor-channel; and tuning IRs, whose specific combination in the IR subunits in the heterotetramer confers chemical specificity. Previous work showed that the transcriptomes from two major chemosensory organs-the lateral flagellum of the antennule (LF) and the tips of the legs (dactyls)-of the Caribbean spiny lobster Panulirus argus express four co-receptor IRs and over 100 tuning IRs. In this paper, we examined and compared the transcriptomes from the LF and dactyls of P. argus and three other decapod crustaceans-the clawed lobster Homarus americanus, red swamp crayfish Procambarus clarkii, and the blue crab Callinectes sapidus. Each species has at least ca. 100 to 250 IRs, 1 to 4 GRLs, and ca. 15 TRP channels including those shown to be involved in chemoreception in other species. The IRs show different degrees of phylogenetic conservation: some are arthropod-conserved, others are pancrustacean-conserved, others appear to be crustacean-conserved, and some appear to be species-specific. Many IRs appear to be more highly expressed in the LF than dactyl. Our results show that decapod crustaceans express an abundance of genes for chemoreceptor proteins of different types, phylogenetic conservation, and expression patterns. An understanding of their functional roles awaits determining their expression patterns in individual chemosensory neurons and the central projections of those neurons.
Collapse
Affiliation(s)
- Mihika T. Kozma
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Yuen Yan Wong
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Neal S. Shukla
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Shrikant D. Pawar
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Manfred Schmidt
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Charles D. Derby
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
12
|
Transcriptome analyses suggest a molecular mechanism for the SIPC response of Amphibalanus amphitrite. Biochem Biophys Res Commun 2020; 525:823-829. [PMID: 32164940 DOI: 10.1016/j.bbrc.2020.02.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Barnacles are notorious marine fouling organisms. Their successful attachment to a substrate requires that they search for an appropriate habitat during their cyprid stage. A chemical cue called SIPC (Settlement-Inducing Protein Complex) has been shown to play a key role in the induction of cyprid gregarious settlement; however, the underlying biochemical mechanism remains unclear. Here, RNA-seq was used to examine the gene expression profiles of Amphibalanus amphitrite cyprids in response to SIPC and to identify SIPC-activated intracellular signaling pathways. A total of 389 unigenes were differentially expressed in response to SIPC, and cement protein genes were not among them. KEGG enrichment analysis suggested that SNARE interactions in the vesicular transport pathway were significantly influenced by SIPC treatment, indicating a possible role for SIPC in triggering protein transportation and secretion. Several genes with specific functions in metamorphosis were found among the differentially expressed genes (DEGs). GO (Gene Ontology) enrichment analysis revealed that the DEGs were significantly enriched in enamel mineralization pathways, suggesting that SIPC may also be involved in the activation of mineralization.
Collapse
|