1
|
Marth T, Kajdi GW, Stern C, Sutter R. Implementing tin-prefiltration in routine clinical CT scans of the lower extremity: impact on radiation dose. Skeletal Radiol 2025:10.1007/s00256-025-04897-3. [PMID: 40011260 DOI: 10.1007/s00256-025-04897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES Several studies have demonstrated the potential of tin-prefiltration to reduce radiation dose while maintaining diagnostic image quality for musculoskeletal imaging. Still, no study has reported data on the impact of tin-prefiltration on radiation dose reduction for clinical routine scanning. MATERIALS AND METHODS Retrospective inclusion of 300 clinically indicated CT scans of the pelvis, knee, and ankle before January 2020 (without tin filter) and after December 2020 (with tin filter). For each joint, 50 examinations with tin-prefiltration and 50 examinations without tin-prefiltration were selected. Dose parameters were extracted, calculated, and compared. Subjective and quantitative parameters for image quality were assessed. RESULTS The CTDIvol, DLP, and effective dose were reduced significantly in all tin-prefiltered examinations compared to the non-tin-prefiltered examinations (p < 0.001): CTDIvol was 65% lower in the pelvis, 73% lower in the knee, and 54% lower in the ankle. This reduced the effective dose of 61%, 71%, and 60%, respectively. In absolute numbers, the reduction of the median effective dose delivered in a single CT scan of the pelvis was - 2.29 mSv, - 0.15 mSv for the knee, and - 0.03 mSv for the ankle. No difference in diagnostic image quality, depiction of bone anatomy and soft tissues, and image artifacts was observed (p > 0.05). Subjective and objective image noise was higher in tin-prefiltered pelvis CT (p < 0.001). CONCLUSION The implementation of tin-prefiltration in clinical routine scan protocols significantly reduced the effective radiation dose for unenhanced CT scans of the lower extremities between 60 and 70%.
Collapse
Affiliation(s)
- Thomas Marth
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland.
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland.
- Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Georg Wilhelm Kajdi
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christoph Stern
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Wong J, Kutschera P, Lau KK. Spectral Shaping Computed Tomography Applications. J Comput Assist Tomogr 2025:00004728-990000000-00426. [PMID: 40008966 DOI: 10.1097/rct.0000000000001738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025]
Abstract
Spectral shaping (also known as spectral filtration) has been utilized in some of the latest computed tomography (CT) systems. This technique involves using tin (Sn) or silver (Ag) filters, which selectively absorb low-energy photons. This review aims to demonstrate the utility of spectral shaping across a wide range of protocols and clinical situations. Spectral-shaped CT protocols using tin filters allow for the acquisition of diagnostic images and greatly reduce the radiation dose, metal artifacts, and photon starvation. These features make spectral shaping suitable for various clinical situations in diagnostic and interventional CT imaging.
Collapse
Affiliation(s)
| | - Peter Kutschera
- Monash Imaging, Monash Health, Melbourne
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kenneth K Lau
- Monash Imaging, Monash Health, Melbourne
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia
| |
Collapse
|
3
|
Huflage H, Kunz AS, Patzer TS, Pichlmeier S, Westhofen T, Gruschwitz P, Heidenreich JF, Lennartz S, Bley TA, Grunz JP. Submillisievert Abdominal Photon-Counting CT versus Energy-integrating Detector CT for Urinary Calculi Detection: Impact on Diagnostic Confidence. Radiology 2024; 312:e232453. [PMID: 39078296 DOI: 10.1148/radiol.232453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Background Contrast-unenhanced abdominal CT is the imaging standard for urinary calculi detection; however, studies comparing photon-counting detector (PCD) CT and energy-integrating detector (EID) CT dose-reduction potentials are lacking. Purpose To compare the radiation dose and image quality of optimized EID CT with those of an experimental PCD CT scan protocol including tin prefiltration in patients suspected of having urinary calculi. Materials and Methods This retrospective single-center study included patients who underwent unenhanced abdominal PCD CT or EID CT for suspected urinary caliculi between February 2022 and March 2023. Signal and noise measurements were performed at three anatomic levels (kidney, psoas, and obturator muscle). Nephrolithiasis and/or urolithiasis presence was independently assessed by three radiologists, and diagnostic confidence was recorded on a five-point scale (1, little to no confidence; 5, complete confidence). Reader agreement was determined by calculating Krippendorff α. Results A total of 507 patients (mean age, 51.7 years ± 17.4 [SD]; 317 male patients) were included (PCD CT group, 229 patients; EID CT group, 278 patients). Readers 1, 2, and 3 detected nephrolithiasis in 129, 127, and 129 patients and 94, 94, and 94 patients, whereas the readers detected urolithiasis in 113, 114, and 114 patients and 152, 153, and 152 patients in the PCD CT and EID CT groups, respectively. Regardless of protocol (PCD CT or EID CT) or calculus localization, near perfect interreader agreement was found (α ≥ 0.99; 95% CI: 0.99, 1). There was no evidence of a difference in reader confidence between PCD CT and EID CT (median confidence, 5; IQR, 5-5; P ≥ .57). The effective doses were 0.79 mSv (IQR, 0.63-0.99 mSv) and 1.39 mSv (IQR, 1.01-1.87 mSv) for PCD CT and EID CT, respectively. Despite the lower radiation exposure, the signal-to-noise ratios at the kidney, psoas, and obturator levels were 30%, 23%, and 17% higher, respectively, in the PCD CT group (P < .001). Conclusion Submillisievert abdominal PCD CT provided high-quality images for the diagnosis of urinary calculi; radiation exposure was reduced by 44% with a higher signal-to-noise ratio than with EID CT and with no evidence of a difference in reader confidence. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Nezami and Malayeri in this issue.
Collapse
Affiliation(s)
- Henner Huflage
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Andreas Steven Kunz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Theresa Sophie Patzer
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Svenja Pichlmeier
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Thilo Westhofen
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Philipp Gruschwitz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Julius Frederik Heidenreich
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Simon Lennartz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Thorsten Alexander Bley
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| | - Jan-Peter Grunz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (H.H., A.S.K., T.S.P., S.P., P.G., J.F.H., T.A.B., J.P.G.); Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany (T.W.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (S.L.)
| |
Collapse
|
4
|
Feldle P, Grunz JP, Kunz AS, Pannenbecker P, Patzer TS, Pichlmeier S, Sauer ST, Hendel R, Ergün S, Bley TA, Huflage H. Influence of spectral shaping and tube voltage modulation in ultralow-dose computed tomography of the abdomen. BMC Med Imaging 2024; 24:49. [PMID: 38395772 PMCID: PMC10893640 DOI: 10.1186/s12880-024-01228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Unenhanced abdominal CT constitutes the diagnostic standard of care in suspected urolithiasis. Aiming to identify potential for radiation dose reduction in this frequent imaging task, this experimental study compares the effect of spectral shaping and tube voltage modulation on image quality. METHODS Using a third-generation dual-source CT, eight cadaveric specimens were scanned with varying tube voltage settings with and without tin filter application (Sn 150, Sn 100, 120, 100, and 80 kVp) at three dose levels (3 mGy: standard; 1 mGy: low; 0.5 mGy: ultralow). Image quality was assessed quantitatively by calculation of signal-to-noise ratios (SNR) for various tissues (spleen, kidney, trabecular bone, fat) and subjectively by three independent radiologists based on a seven-point rating scale (7 = excellent; 1 = very poor). RESULTS Irrespective of dose level, Sn 100 kVp resulted in the highest SNR of all tube voltage settings. In direct comparison to Sn 150 kVp, superior SNR was ascertained for spleen (p ≤ 0.004) and kidney tissue (p ≤ 0.009). In ultralow-dose scans, subjective image quality of Sn 100 kVp (median score 3; interquartile range 3-3) was higher compared with conventional imaging at 120 kVp (2; 2-2), 100 kVp (1; 1-2), and 80 kVp (1; 1-1) (all p < 0.001). Indicated by an intraclass correlation coefficient of 0.945 (95% confidence interval: 0.927-0.960), interrater reliability was excellent. CONCLUSIONS In abdominal CT with maximised dose reduction, tin prefiltration at 100 kVp allows for superior image quality over Sn 150 kVp and conventional imaging without spectral shaping.
Collapse
Affiliation(s)
- Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Svenja Pichlmeier
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Stephanie Tina Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| |
Collapse
|
5
|
Feldle P, Grunz JP, Huflage H, Halt D, Schüle S, Sauer L, Wunderlich A, Beer M, Bley TA, Hackenbroch C. Organ-based tube current modulation versus spectral shaping via tin prefiltration: What does bismuth breast shielding add in low-dose lung CT? Eur J Radiol 2023; 169:111157. [PMID: 37871356 DOI: 10.1016/j.ejrad.2023.111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE Since organ-based tube current modulation (OBTCM) and tin prefiltration are limited on their own in lowering the dose of lung CT examinations, this experimental study was designed to investigate whether combinations with anterior patient shielding can increase the dose reduction potential. MATERIAL AND METHODS Three pairs of scan protocols without/with breast shield (P1/P2: standard 120kVp, P3/P4: OBTCM at 100 kVp, P5/P6: Sn 100 kVp) were employed for radiation exposure and image quality comparisons on an anthropomorphic Alderson-Rando phantom. Equivalent doses were measured in eleven sites via thermoluminescent dosimetry and the effective dose was obtained by summation of the weighted organ doses. Dose-weighted contrast-to-noise ratios (CNRD) were calculated and four radiologists independently assessed the quality of images generated with each protocol. RESULTS While no significant difference was determined between standard and OBTCM protocols regardless of breast shield (p ≥ 0.068), equivalent doses with spectral shaping were substantially lower (p ≤ 0.003). The highest effective dose was ascertained for standard scans (P1/P2: 7.3/6.8 mSv) with a dose reduction of 8.0 % via breast shielding. The use of a bismuth shield was more beneficial in OBTCM (P3/P4: 6.6/5.3 mSv) and spectral shaping (P5/P6: 0.7/0.6 mSv), reducing the effective dose by 19.8 % and 13.9 %, respectively. Subjective assessment favoured standard protocol P1 over tin prefiltration low-dose scans (p ≤ 0.032), however, no scan protocol entailed diagnostically insufficient image quality. CONCLUSIONS Whereas breast shielding is particularly beneficial in combination with OBTCM, spectral shaping via tin prefiltration facilitates the most pronounced dose reduction in lung CT imaging with acceptable image quality.
Collapse
Affiliation(s)
- Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Daniel Halt
- Department of Radiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Simone Schüle
- Department of Radiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Leonie Sauer
- Department of Radiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Arthur Wunderlich
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Carsten Hackenbroch
- Department of Radiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
6
|
Greffier J, Fitton I, Ngoc Ty CV, Frandon J, Beregi JP, Dabli D. Impact of tin filter on the image quality of ultra-low dose chest CT: A phantom study on three CT systems. Diagn Interv Imaging 2023; 104:506-512. [PMID: 37286462 DOI: 10.1016/j.diii.2023.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE The purpose of this study was to assess the impact of a tin filter on the image quality of ultra-low dose (ULD) chest computed tomography (CT) on three different CT systems. MATERIALS AND METHODS An image quality phantom was scanned on three CT systems including two split-filter dual-energy CT (SFCT-1 and SFCT-2) scanners and one dual-source CT scanner (DSCT). Acquisitions were performed with a volume CT dose index (CTDIvol) of 0.4 mGy, first at 100 kVp without tin filter (Sn), and second, at Sn100/Sn140 kVp, Sn100/Sn110/Sn120/Sn130/Sn140/Sn150 kVp and Sn100/Sn150 kVp for SFCT-1, SFCT-2 and DSCT respectively. Noise-power-spectrum and task-based transfer function were computed. The detectability index (d') was computed to model the detection of two chest lesions. RESULTS For DSCT and SFCT-1, noise magnitude values were higher with 100kVp than with Sn100 kVp and with Sn140 kVp or Sn150 kVp than with Sn100 kVp. For SFCT-2, noise magnitude increased from Sn110 kVp to Sn150 kVp and was higher at Sn100 kVp than at Sn110 kVp. For most kVp with the tin filter, the noise amplitude values were lower than those obtained at 100 kVp. For each CT system, noise texture and spatial resolution values were similar with 100 kVp and with all kVp used with a tin filter. For all simulated chest lesions, the highest d' values were obtained at Sn100 kVp for SFCT-1 and DSCT and at Sn110 kVp for SFCT-2. CONCLUSION For ULD chest CT protocols, the lowest noise magnitude and highest detectability values for simulated chest lesions are obtained with Sn100 kVp for the SFCT-1 and DSCT CT systems and at Sn110 kVp for SFCT-2.
Collapse
Affiliation(s)
- Joël Greffier
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France.
| | - Isabelle Fitton
- Université Paris Cité, 75006 Paris, France, Department of Radiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Claire Van Ngoc Ty
- Université Paris Cité, 75006 Paris, France, Department of Radiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Julien Frandon
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| | - Jean-Paul Beregi
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| | - Djamel Dabli
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| |
Collapse
|
7
|
Zhou W, Malave MN, Maloney JA, White C, Weinman JP, Huo D, Neuberger I. Radiation dose reduction using spectral shaping in pediatric non-contrast sinus CT. Pediatr Radiol 2023; 53:2069-2078. [PMID: 37341726 DOI: 10.1007/s00247-023-05699-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND CT is the standard imaging technique to evaluate pediatric sinuses. Given the potential risks of radiation exposure in children, it is important to reduce pediatric CT dose and maintain image quality. OBJECTIVE To study the utility of spectral shaping with tin filtration to improve dose efficiency for pediatric sinus CT exams. MATERIALS AND METHODS A head phantom was scanned on a commercial dual-source CT using a conventional protocol (120 kV) and a proposed 100 kV with a 0.4-mm tin filter (Sn100 kV) protocol for comparison. Entrance point dose (EPD) of eye and parotid gland region was measured by an ion chamber. Sixty pediatric sinus CT exams (33 acquired with 120 kV, 27 acquired with Sn100 kV) were retrospectively collected. All patient images were objectively measured for image quality and blindly reviewed by 4 pediatric neuroradiologists for overall noise, overall diagnostic quality, and delineation of 4 critical paranasal sinus structures, using a 5-point Likert scale. RESULTS Phantom CTDIvol from Sn100 kV is 4.35 mGy, compared to CTDIvol of 5.73 mGy from 120 kV at an identical noise level. EPD of sensitive organs decreases in Sn100 kV (e.g., right eye EPD 3.83±0.42 mGy), compared to 120 kV (5.26±0.24 mGy). Patients in the 2 protocol groups were age and weight (unpaired T test P>0.05) matched. The patient CTDIvol of Sn100 kV (4.45±0.47 mGy) is significantly lower than 120 kV (5.56±0.48 mGy, unpaired T test P<0.001). No statistically significant difference for any subjective readers' score (Wilcoxon test P>0.05) was found between the two groups, indicating proposed spectral shaping provides equivalent diagnostic image quality. CONCLUSION Phantom and patient results demonstrate that spectral shaping can significantly reduce radiation dose for non-contrast pediatric sinus CT without compromising diagnostic quality.
Collapse
Affiliation(s)
- Wei Zhou
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
| | - Maricarmen Nazario Malave
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA
| | - John A Maloney
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA
| | - Christina White
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA
| | - Jason P Weinman
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA
| | - Donglai Huo
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA
| | - Ilana Neuberger
- Radiology, University of Colorado, Anschutz Medical Campus, 13001 E 17Th Pl, Aurora, CO, USA.
- Radiology, Children's Hospital Colorado, 13123 E 16Th Ave, Aurora, CO, USA.
| |
Collapse
|
8
|
Hackenbroch C, Strobel JRB, Lorenz KJ, Beer M, Schüle S. Dose development in sinonasal imaging over the last decade - a retrospective patient study. Head Face Med 2023; 19:28. [PMID: 37430304 PMCID: PMC10332007 DOI: 10.1186/s13005-023-00378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Computed tomography (CT) has become the primary imaging modality for visualization of the paranasal sinuses. In this retrospective, single center patient study the radiation dose development in the past 12 years in CT imaging of the paranasal sinuses was assessed. METHODS The computed tomography dose index (CTDIVol) and dose length product (DLP) of a total of 1246 patients (average age: 41 ± 18 years, 361 females, 885 males) were evaluated, who received imaging of the paranasal sinuses either for chronic sinusitis diagnostic, preoperatively or posttraumatically. Scans were performed on three different CT scanners (Somatom Definition AS, Somatom Definition AS+, Somatom Force, all from Siemens Healthineers) and on one CBCT (Morita) ranging from 2010 to 2022. Reconstruction techniques were filtered back projection and three generations of iterative reconstruction (IRIS, SAFIRE, ADMIRE, all from Siemens Healthineers). Group comparisons were performed using either parametrical (ANOVA) or non-parametrical tests (Kruskal-Wallis Test), where applicable. RESULTS Over the past 12 years, there was a 73%, 54%, and 66% CTDIVol reduction and a significant (p < 0.001) 72%, 33%, and 67% DLP reduction in assessing the paranasal sinuses for chronic sinusitis, preoperatively and posttraumatically, respectively. CONCLUSION Technological developments in CT imaging, both hardware and software based, have led to a significant reduction in dose exposure in recent years. Particularly in imaging of the paranasal sinuses, the reduction of radiation exposure is of great interest due to the often young patient age and radiation-sensitive organs in the area of radiation exposure.
Collapse
Affiliation(s)
- Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Ulm, Baden-Wurttemberg, Germany.
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Wurttemberg, Germany.
| | - Joachim Rudolf Balthasar Strobel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Ulm, Baden-Wurttemberg, Germany
| | - Kai Johannes Lorenz
- Department of Otorhinolaryngology and Head and Neck Surgery, German Armed Forces Central Hospital Koblenz, Koblenz, Rhineland-Palatinate, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Wurttemberg, Germany
| | - Simone Schüle
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Ulm, Baden-Wurttemberg, Germany
| |
Collapse
|
9
|
Yuan Z, Liu T, Zhang B, Wu J, He Y, Chen T, Zhang Z, Li C, Liu Y. Comparison of selected photon shield and organ-based tube current modulation for radiation dose reduction in head computed tomography: A phantom study. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023:XST230018. [PMID: 37092211 DOI: 10.3233/xst-230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the radiation dose and image quality of head CT using SPS and OBTCM techniques. METHODS Three anthropomorphic head phantoms (1-yr-old, 5-yr-old, and adult) were used. Images were acquired using four modes (Default protocol, OBTCM, SPS, and SPS+OBTCM). Absorbed dose to the lens, anterior brain (brain_A), and posterior brain (brain_P) was measured and compared. Image noise and CNR were assessed in the selected regions of interest (ROIs). RESULTS Compared with that in the Default protocol, the absorbed dose to the lens reduced by up to 28.33%,71.38%, and 71.12% in OBTCM, SPS, and SPS+OBTCM, respectively. The noise level in OBTCM slightly (≤1.45HU) increased than that in Default protocol, and the SPS or SPS+OBTCM mode resulted in a quantitatively small increase (≤2.58HU) in three phantoms. There was no significant difference in CNR of different phantoms under varies scanning modes (p > 0.05). CONCLUSIONS During head CT examinations, the SPS mode can reduce the radiation dose while maintaining image quality. SPS+OBTCM couldn't further effectively reduce the absorbed dose to the lens for 1-yr and 5-yr-old phantoms. Thus, SPS mode in pediatric and SPS+OBTCM mode in adult are better than other modes, and should be used in clinical practice.
Collapse
Affiliation(s)
- Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Zhang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yaoyao He
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiao Chen
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxi Zhang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiling Li
- Department of Radiological Health, Wuhan Prevention and Treatment for Occupational Disease, Wuhan, China
| | - Yulin Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Potential of Unenhanced Ultra-Low-Dose Abdominal Photon-Counting CT with Tin Filtration: A Cadaveric Study. Diagnostics (Basel) 2023; 13:diagnostics13040603. [PMID: 36832091 PMCID: PMC9955485 DOI: 10.3390/diagnostics13040603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. MATERIALS AND METHODS Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. RESULTS Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5-5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95% confidence interval 0.763-0.906; p < 0.001) indicated good interrater reliability. CONCLUSIONS Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy.
Collapse
|
11
|
Schüle S, Strobel JRB, Lorenz KJ, Beer M, Hackenbroch C. Tin filter compared to low kV protocols - optimizing sinonasal imaging in computed tomography. PLoS One 2023; 18:e0279907. [PMID: 36607911 PMCID: PMC9821404 DOI: 10.1371/journal.pone.0279907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/18/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Paranasal sinus imaging due to chronic inflammatory disease is one of the most common examinations in head and neck radiology with CT imaging considered the current gold standard. In this phantom study we analyzed different low dose CT protocols in terms of image quality, radiation exposure and subjective evaluation in order to establish an optimized scanning protocol. METHODS In a phantom study, an Alderson phantom was scanned using 12 protocols between 70-120 kV and 25-200 mAs with and without tin filtration. For all datasets, iterative reconstruction was used. Data were objectively evaluated (image noise, (dose-weighted) contrast-to-noise ratio) and for subjective evaluation an online survey using a Likert scale was performed to reach a large group of clinically experienced reader (n = 62). The protocol was considered diagnostically insufficient if the median score was 4 and above and if more than 10% of raters scored 4 and above on the Likert scale. For an interreader agreement an ICC was calculated. To compare clinical value in relation to the applied dose and the objective image parameters, we calculated a figure of merit (FOM) and ranked the protocols accordingly. RESULTS There was an overall moderate agreement between the 62 readers for the 12 examined CT protocols. In this phantom study, protocols with 100 kV with spectral shaping and 50-100 mAs obtained the best results for its combination of dose, image quality and clinical information value for diagnosing sinusitis (FOM 1st- 2nd place) with the 70 kV and 50 mAs as a good alternative as well (Sinusitis: FOM shared 2nd). For preoperative planning, where a higher dose is necessary, 100 kV with spectral shaping and 100 mAs achieved the overall best results (FOM 1st place) with 70 kV and 50 mAs ranking 4th. CONCLUSION 100-kV protocols with spectral shaping or low kV protocols (70 kV) with a similarly low dose showed the best figure of merit for imaging sinonasal disease and preoperative planning. With modern scanner technology available, spectral shaping or low KV protocols should be used for sinusitis imaging.
Collapse
Affiliation(s)
- Simone Schüle
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Ulm, Baden-Wurttemberg, Germany
| | - Joachim Rudolf Balthasar Strobel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Ulm, Baden-Wurttemberg, Germany
| | - Kai Johannes Lorenz
- Department of Otorhinolaryngology and Head and Neck Surgery, German Armed Forces Central Hospital Koblenz, Koblenz, Rhineland-Palatinate, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Wurttemberg, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Ulm, Baden-Wurttemberg, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Wurttemberg, Germany
- * E-mail:
| |
Collapse
|
12
|
Spectral Shaping Via Tin Prefiltration in Ultra-High-Resolution Photon-Counting and Energy-Integrating Detector CT of the Temporal Bone. Invest Radiol 2022; 57:819-825. [PMID: 35776435 DOI: 10.1097/rli.0000000000000901] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Hardening the x-ray beam, tin prefiltration is established for imaging of high-contrast subjects in energy-integrating detector computed tomography (EID-CT). With this work, we aimed to investigate the dose-saving potential of spectral shaping via tin prefiltration in photon-counting detector CT (PCD-CT) of the temporal bone. METHODS Deploying dose-matched scan protocols with and without tin prefiltration on a PCD-CT and EID-CT system (low-/intermediate-/full-dose: 4.8/7.6-7.7/27.0-27.1 mGy), 12 ultra-high-resolution examinations were performed on each of 5 cadaveric heads. While 120 kVp was applied for standard imaging, the protocols with spectral shaping used the highest potential available with tin prefiltration (EID-CT: Sn 150 kVp, PCD-CT: Sn 140 kVp). Contrast-to-noise ratios and dose-saving potential by spectral shaping were computed for each scanner. Three radiologists independently assessed the image quality of each examination with the intraclass correlation coefficient being computed to measure interrater agreement. RESULTS Regardless of tin prefiltration, PCD-CT with low (171.2 ± 10.3 HU) and intermediate radiation dose (134.7 ± 4.5 HU) provided less image noise than full-dose EID-CT (177.0 ± 14.2 HU; P < 0.001). Targeting matched image noise to 120 kVp EID-CT, mean dose reduction of 79.3% ± 3.9% could be realized in 120 kVp PCD-CT. Subjective image quality of PCD-CT was better than of EID-CT on each dose level ( P < 0.050). While no distinction was found between dose-matched PCD-CT with and without tin prefiltration ( P ≥ 0.928), Sn 150 kVp EID-CT provided better image quality than 120 kVp EID-CT at high and intermediate dose levels ( P > 0.050). The majority of low-dose EID-CT examinations were considered not diagnostic, whereas PCD-CT scans of the same dose level received satisfactory or better ratings. Interrater reliability was excellent (intraclass correlation coefficient 0.903). CONCLUSIONS PCD-CT provides superior image quality and significant dose savings compared with EID-CT for ultra-high-resolution examinations of the temporal bone. Aiming for matched image noise, high-voltage scan protocols with tin prefiltration facilitate additional dose saving in EID-CT, whereas superior inherent denoising decreases the dose reduction potential of spectral shaping in PCD-CT.
Collapse
|
13
|
Grunz JP, Petritsch B, Luetkens KS, Kunz AS, Lennartz S, Ergün S, Bley TA, Huflage H. Ultra-Low-Dose Photon-Counting CT Imaging of the Paranasal Sinus With Tin Prefiltration: How Low Can We Go? Invest Radiol 2022; 57:728-733. [PMID: 35703452 DOI: 10.1097/rli.0000000000000887] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In this study, we compared photon-counting detector computed tomography (PCD-CT) and energy-integrating detector computed tomography (EID-CT) for ultra-low-dose paranasal sinus examinations with employed tin prefiltration. The goal of our investigation was to define the most dose-effective scan protocols for diagnostic assessment of midface trauma, preoperative sinonasal anatomy, and acute rhinosinusitis. MATERIALS AND METHODS Five cadaveric heads were examined with the standard-resolution scan mode of both CT systems using a tube potential of 100 kV and tin prefiltration for 7 dose-equivalent scan protocols (CTDI vol = 4.16-0.15 mGy) and 2 additional ultra-low-dose protocols exclusively feasible on the PCD-CT scanner (0.10 and 0.08 mGy). After applying comparable iterative reconstruction algorithms, image quality was subjectively assessed by 4 radiologists. The intraclass correlation coefficient was calculated to estimate the agreement among readers. Image noise was quantified in standardized regions of interest to establish an additional quantitative criterion of image quality. RESULTS The most dose-effective scan protocols for diagnostic imaging of midface trauma (PCD-CT: 1.24 mGy; EID-CT: 2.05 mGy), preoperative sinonasal anatomy (PCD-CT: 0.20 mGy; EID-CT: 0.40 mGy), and acute rhinosinusitis (PCD-CT: 0.08 mGy; EID-CT: 0.15 mGy) required less radiation exposure on the PCD-CT system ( P < 0.050). Despite higher image noise, ultra-low-dose PCD-CT studies (0.08 and 0.10 mGy) were considered suitable for inflammation-focused imaging, offering lower-dose penalties than EID-CT studies. Interobserver reliability for subjective image quality was excellent (intraclass correlation coefficient, 0.90; 95% confidence interval, 0.88-0.93; P < 0.001). CONCLUSIONS In paranasal sinus imaging with tin prefiltration, the PCD-CT allowed for superior image quality compared with high-end EID-CT. Assessment of paranasal sinuses with an ultra-low radiation exposure of 0.08 mGy was deemed adequate, suggesting substantial dose reduction potential for clinical routine, for example, in the diagnostic workup of patients with rhinosinusitis.
Collapse
Affiliation(s)
- Jan-Peter Grunz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg
| | - Bernhard Petritsch
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg
| | | | - Andreas Steven Kunz
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Alexander Bley
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg
| | - Henner Huflage
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg
| |
Collapse
|
14
|
Tin-filtered 100 kV Ultra-low-dose Abdominal CT for Calculi Detection in the Urinary Tract: A Comparative Study of 510 Cases. Acad Radiol 2022; 30:1033-1038. [PMID: 35963837 DOI: 10.1016/j.acra.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVES For detection of urinary calculi, unenhanced low-dose computed tomography is the method of choice, outperforming radiography and ultrasound. This retrospective monocentric study aims to compare a clinically established, dedicated low-dose imaging protocol for detection of urinary calculi with an ultra-low-dose protocol employing tin prefiltration at a standardized tube voltage of 100 kVp. METHODS Two study arms included a total of 510 cases. The "low-dose group" was comprised of 290 individuals (96 women; age 49 ± 16 years; BMI 27.23 ± 5.60 kg/m2). The "ultra-low-dose group" with Sn100 kVp consisted of 220 patients (84 women; age 47 ± 17 years; BMI 26.82 ± 5.62 kg/m2). No significant difference was ascertained for comparison of age (p = 0.132) and BMI (p = 0.207) between cohorts. For quantitative assessment of image quality, image noise was assessed. RESULTS No significant difference regarding frequency of calculi detection was found between groups (p = 0.596). Compared to the low-dose protocol (3.08 mSv; IQR 2.22-4.02 mSv), effective dose was reduced by 62.35% with the ultra-low-dose protocol employing spectral shaping (1.16 mSv; IQR 0.89-1.54 mSv). Image noise was calculated at 18.90 (IQR 17.39-21.20) for the low-dose protocol and at 18.69 (IQR 17.30-21.62) for the ultra-low-dose spectral shaping protocol. No significant difference was ascertained for comparison between groups (p = 0.793). CONCLUSION For urinary calculi detection, ultra-low-dose scans utilizing spectral shaping by means of tin prefiltration at 100 kVp allow for considerable dose reduction of up to 62% over conventional low-dose CT without compromising image quality.
Collapse
|
15
|
Huflage H, Grunz JP, Hackenbroch C, Halt D, Luetkens KS, Alfred Schmidt AM, Patzer TS, Ergün S, Bley TA, Kunz AS. Metal artefact reduction in low-dose computed tomography: Benefits of tin prefiltration versus postprocessing of dual-energy datasets over conventional CT imaging. Radiography (Lond) 2022; 28:690-696. [PMID: 35728278 DOI: 10.1016/j.radi.2022.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The purpose of this study was to determine the potential for metal artefact reduction in low-dose multidetector CT as these pose a frequent challenge in clinical routine. Investigations focused on whether spectral shaping via tin prefiltration, virtual monoenergetic imaging or virtual blend imaging (VBI) offers superior image quality in comparison with conventional CT imaging. METHODS Using a third-generation dual-source CT scanner, two cadaveric specimens with different metal implants (dental, cervical spine, hip, knee) were examined with acquisition protocols matched for radiation dose with regards to tube voltage and current. In order to allow for precise comparison, and due to the relatively short scan lengths, automatic tube current modulation was disabled. Specifically, the following scan protocals were examined: conventional CT protocols (100/120 kVp), tin prefiltration (Sn 100/Sn 150 kVp), VBI and virtual monoenergetic imaging (VME 100/120/150 keV). Mean attenuation and image noise were measured in hyperdense and hypodense artefacts, in artefact-impaired and artefact-free soft tissue. Subjective image quality was rated independently by three radiologists. RESULTS Objectively, Sn 150 kVp allowed for the best reduction of hyperdense streak artefacts (p < 0.001), while VME 150 keV and Sn 150 kVp protocols facilitated equally good reduction of hypodense artefacts (p = 0.173). Artefact-impaired soft tissue attenuation was lowest in Sn 150 kVp protocols (p ≤ 0.011), whereas all VME showed significantly less image noise compared to conventional or tin-filtered protocols (p ≤ 0.001). Subjective assessment favoured Sn 150 kVp regarding hyperdense streak artefacts and delineation of cortical bone (p ≤ 0.005). The intraclass correlation coefficient was 0.776 (95% confidence interval: 0.712-0.831; p < 0.001) indicating good interrater reliability. CONCLUSION In the presence of metal implants in our cadaveric study, tin prefiltration with 150 kVp offers superior artefact reduction for low-dose CT imaging of osseous tissue compared with virtual monoenergetic images of dual-energy datasets. The delineation of cortical boundaries seems to benefit particularly from spectral shaping. IMPLICATIONS FOR PRACTICE Low-dose CT imaging of osseous tissue in combination with tin prefiltration allows for superior metal artefact reduction when compared to virtual monoenergetic images of dual-energy datasets. Employing this technique ought to be considered in daily routine when metal implants are present within the scan volume as findings suggest it allows for radiation dose reduction and facilitates diagnosis relevant to further treatment.
Collapse
Affiliation(s)
- H Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - J-P Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - C Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - D Halt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany.
| | - K S Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A M Alfred Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - T S Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - S Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany.
| | - T A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A S Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
16
|
Li Y, Liu X, Zhuang XH, Wang MJ, Song XF. Assessment of low-dose paranasal sinus CT imaging using a new deep learning image reconstruction technique in children compared to adaptive statistical iterative reconstruction V (ASiR-V). BMC Med Imaging 2022; 22:106. [PMID: 35658908 PMCID: PMC9164403 DOI: 10.1186/s12880-022-00834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To compare the effects of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASiR-V) on image quality in low-dose computed tomography (CT) of paranasal sinuses in children. Methods Low-dose CT scans of the paranasal sinuses in 25 pediatric patients were retrospectively evaluated. The raw data were reconstructed with three levels of DLIR (high, H; medium, M; and low, L), filtered back projection (FBP), and ASiR-V (30% and 50%). Image noise was measured in both soft tissue and bone windows, and the signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of the images were calculated. Subjective image quality at the ethmoid sinus and nasal cavity levels of the six groups of reconstructed images was assessed by two doctors using a five-point Likert scale in a double-blind manner. Results The patients’ mean dose-length product and effective dose were 36.65 ± 2.44 mGy·cm and 0.17 ± 0.03 mSv, respectively. (1) Objective evaluation: 1. Soft tissue window: The difference among groups in each parameter was significant (P < 0.05). Pairwise comparisons showed that the H group’ s parameters were significantly better (P < 0.05) than those of the 50% post-ASiR-V group. 2. Bone window: No significant between-group differences were found in the noise of the petrous portion of the temporal bone or its SNR or in the noise of the pterygoid processes of the sphenoids or their SNRs (P > 0.05). Significant differences were observed in the background noise and CNR (P < 0.05). As the DLIR intensity increased, image noise decreased and the CNR improved. The H group exhibited the best image quality. (2) Subjective evaluation: Scores for images of the ethmoid sinuses were not significantly different among groups (P > 0.05). Scores for images of the nasal cavity were significantly different among groups (P < 0.05) and were ranked in descending order as follows: H, M, L, 50% post-ASiR-V, 30% post-ASiR-V, and FBP. Conclusion DLIR was superior to FBP and post-ASiR-V in low-dose CT scans of pediatric paranasal sinuses. At high intensity (H), DLIR provided the best reconstruction effects.
Collapse
|
17
|
Kimura K, Fujioka T, Mori M, Adachi T, Hiraishi T, Hada H, Ishikawa T, Tateishi U. Dose Reduction and Diagnostic Performance of Tin Filter-Based Spectral Shaping CT in Patients with Colorectal Cancer. Tomography 2022; 8:1079-1089. [PMID: 35448722 PMCID: PMC9033029 DOI: 10.3390/tomography8020088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/02/2022] Open
Abstract
Routine CT examinations are crucial in colorectal cancer patients (CCPs); however, the high frequency of radiation exposure is a significant concern. This study investigated the radiation dose, image quality, and diagnostic performance of tin filter-based spectral shaping chest−abdominal−pelvic (CAP) CT for CCPs. We reviewed 44 CCPs who underwent single-phase enhanced tin-filtered 100 kV (TF100kV) and standard 120 kV (ST120kV) CAP CT on separate days. Radiation metrics including the volume CT dose index (CTDIvol), dose-length product (DLP), and effective dose (ED) were calculated for both protocols. Two radiologists assessed the presence of the following lesions: lung metastasis, liver metastasis, lymph node metastasis, peritoneal dissemination, and bone metastasis. The area under the receiver operating characteristic curve (AUC) was calculated for the diagnostic performance of each protocol. Radiation metrics of the TF100kV protocol were significantly lower than those of the ST120kV protocol (CDTIvol 1.60 ± 0.31 mGy vs. 14.4 ± 2.50, p < 0.0001; DLP 107.1 (95.9−125.5) mGy·cm vs. 996.7 (886.2−1144.3), p < 0.0001; ED 1.93 (1.73−2.26) mSv vs. 17.9 (16.0−20.6), p < 0.0001, respectively). TF100kV protocol achieved comparable diagnostic performance to that of the ST120kV protocol (AUC for lung metastasis: 1.00 vs. 0.94; liver metastasis: 0.88 vs. 0.83, respectively). TF100kV protocol could substantially reduce the radiation dose by 89% compared to that with the ST120kV protocol while maintaining good diagnostic performance in CCPs.
Collapse
Affiliation(s)
- Koichiro Kimura
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
- Correspondence: ; Tel.: +81-3-5803-5311
| | - Mio Mori
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
| | - Takuya Adachi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
| | - Takumi Hiraishi
- Department of Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (T.H.); (H.H.)
| | - Hiroto Hada
- Department of Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (T.H.); (H.H.)
| | - Toshiaki Ishikawa
- Department of Specialized Surgeries, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan;
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan; (K.K.); (M.M.); (T.A.); (U.T.)
| |
Collapse
|
18
|
Lee S, Jang SL, Kim S, Lee J, Hyeong S, Choi J. Feasibility of low-dose CT protocols for evaluating the sinonasal cavity and reducing radiation exposure in dogs. Vet Radiol Ultrasound 2022; 63:414-421. [PMID: 35188314 DOI: 10.1111/vru.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
With the increasing use of radiation therapy for treatment of canine sinonasal neoplasia, there is a need for developing low-dose CT protocols to help minimize radiation exposure. The purpose of this study was to assess the trade-off between image quality and reduced radiation exposure of a low-dose CT technique in the canine sinonasal cavity. In this prospective, experimental study, CT images of the sinonasal cavities from 10 normal Beagles were acquired using high-dose (130 kVp) or low-dose (110 kVp, 80 kVp) protocol. Radiation dose and image quality were compared. Radiation exposure measured by the volume-weighted CT dose index and dose-length product was reduced by 36% at 110 kVp and 74% at 80 kVp respectively, compared to the corresponding values at 130 kVp (P = 0.000). Low-dose protocol resulted in higher image noise and reduced signal-to-noise ratio and contrast-to-noise ratio than 130 kVp in most evaluated regions of interest (P < 0.05). CT numbers of the contrast-enhanced structures were highest at 80 kVp (P = 0.000). Conspicuity of most sinonasal structures was similar for high dose and both lower dose protocols. The results of this study indicate that 80 or 110 kVp can be used for sinonasal CT examinations to reduce radiation exposure to the patient without compromising image quality.
Collapse
Affiliation(s)
- Suhyun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Seo-Lyn Jang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Soyeon Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Juryeong Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Seongjae Hyeong
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Jihye Choi
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Luo S, Sha Y, Wu J, Lin N, Pan Y, Zhang F, Huang W. Differentiation of malignant from benign orbital tumours using dual-energy CT. Clin Radiol 2022; 77:307-313. [PMID: 35094818 DOI: 10.1016/j.crad.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
AIM To investigate the diagnostic accuracy of dual-energy computed tomography (DECT)-derived iodine concentration (IC), effective atomic number (Zeff), and spectral attenuation information for differentiating malignant and benign orbital tumours. MATERIALS AND METHODS Data from 41 patients with orbital tumours from November 2019 to March 2021 were analysed retrospectively. Each patient underwent contrast-enhanced DECT using a 128-section dual-source computed tomography (DSCT) system. Dual-energy information, including IC, normalised iodine concentration (NIC), Zeff, virtual monoenergetic images (VMIs) reconstructed from 40 to 120 keV and slope (k) value were determined. Quantitative measurement of DECT parameters was undertaken by two independent radiologists blinded to clinical data. Differences in parameters were assessed using independent sample t-test. Diagnosis performance was calculated by the receiver operating characteristic (ROC) curve analysis. Radiation doses of conventional CT and DECT were compared by paired t-tests. RESULTS Forty-one patients with histopathologically confirmed tumours were enrolled, including 10 malignant cases and 21 benign cases. Malignant orbital tumours exhibited significantly greater IC, NIC, Zeff, CT attenuation of VMIs at 40-105 keV, and k values compared to benign orbital tumours (p<0.05). In ROC analyses, 40 keV VMI demonstrated the highest diagnostic performance of single parameters (area under the ROC curve [AUC], 0.940), and combined parameters achieved the best performance (AUC, 0.971; sensitivity, 90%; specificity, 93.55%). Radiation doses were significantly reduced in DECT than conventional CT (p<0.001). CONCLUSIONS Quantitative DECT analysis can be a useful technique, which yields excellent diagnostic accuracy, in the differentiation of malignant and benign orbital tumours with low radiation dose.
Collapse
Affiliation(s)
- S Luo
- Shanghai Institution of Medical Imaging, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China; Department of Radiology, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Y Sha
- Department of Radiology, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China.
| | - J Wu
- Siemens Healthineers, No. 399, West Haiyang Road, Shanghai, 200126, China
| | - N Lin
- Department of Radiology, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Y Pan
- Department of Radiology, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China
| | - F Zhang
- Department of Radiology, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China
| | - W Huang
- Department of Radiology, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China
| |
Collapse
|
20
|
A dose-neutral image quality comparison of different CBCT and CT systems using paranasal sinus imaging protocols and phantoms. Eur Arch Otorhinolaryngol 2022; 279:4407-4414. [PMID: 35084532 PMCID: PMC9363284 DOI: 10.1007/s00405-022-07271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Purpose To compare the image quality produced by equivalent low-dose and default sinus imaging protocols of a conventional dental cone-beam computed tomography (CBCT) scanner, an extremity CBCT scanner and a clinical multidetector computed tomography (MDCT) scanner.
Methods Three different phantoms were scanned using dose–neutral ultra-low-dose and low-dose sinus imaging protocols, as well as default sinus protocols of each device. Quantified parameters of image quality included modulation transfer function (MTF) to characterize the spatial response of the imaging system, contrast-to-noise ratio, low contrast visibility, image uniformity and Hounsfield unit accuracy. MTF was calculated using the line spread and edge spread functions (LSF and ESF).
Results The dental CBCT had superior performance over the extremity CBCT in each studied parameter at similar dose levels. The MDCT had better contrast-to-noise ratio, low contrast visibility and image uniformity than the CBCT scanners. However, the CBCT scanners had better resolution compared to the MDCT. Accuracy of HU values for different materials was on the same level between the dental CBCT and MDCT, but substantially poorer performance was observed with the extremity CBCT.
Conclusions The studied dental CBCT scanner showed superior performance over the studied extremity CBCT scanner when using dose–neutral imaging protocols. In case a dental CBCT is not available, the given extremity CBCT is still a viable option as it provides the benefit of high resolution over a conventional MDCT.
Collapse
|
21
|
Luetkens KS, Huflage H, Kunz AS, Ritschl L, Herbst M, Kappler S, Ergün S, Goertz L, Pennig L, Bley TA, Gassenmaier T, Grunz JP. The effect of tin prefiltration on extremity cone-beam CT imaging with a twin robotic X-ray system. Radiography (Lond) 2021; 28:433-439. [PMID: 34716089 DOI: 10.1016/j.radi.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION While tin prefiltration is established in various CT applications, its value in extremity cone-beam CT relative to optimized spectra has not been thoroughly assessed thus far. This study aims to investigate the effect of tin filters in extremity cone-beam CT with a twin-robotic X-ray system. METHODS Wrist, elbow and ankle joints of two cadaveric specimens were examined in a laboratory setup with different combinations of prefiltration (copper, tin), tube voltage and current-time product. Image quality was assessed subjectively by five radiologists with Fleiss' kappa being computed to measure interrater agreement. To provide a semiquantitative criterion for image quality, contrast-to-noise ratios (CNR) were compared for standardized regions of interest. Volume CT dose indices were calculated for a 16 cm polymethylmethacrylate phantom. RESULTS Radiation dose ranged from 17.4 mGy in the clinical standard protocol without tin filter to as low as 0.7 mGy with tin prefiltration. Image quality ratings and CNR for tin-filtered scans with 100 kV were lower than for 80 kV studies with copper prefiltration despite higher dose (11.2 and 5.6 vs. 4.5 mGy; p < 0.001). No difference was ascertained between 100 kV scans with tin filtration and 60 kV copper-filtered scans with 75% dose reduction (subjective: p = 0.101; CNR: p = 0.706). Fleiss' kappa of 0.597 (95% confidence interval 0.567-0.626; p < 0.001) indicated moderate interrater agreement. CONCLUSION Considerable dose reduction is feasible with tin prefiltration, however, the twin-robotic X-ray system's low-dose potential for extremity 3D imaging is maximized with a dedicated low-kilovolt scan protocol in situations without extensive beam-hardening artifacts. IMPLICATIONS FOR PRACTICE Low-kilovolt imaging with copper prefiltration provides a superior trade-off between dose reduction and image quality compared to tin-filtered cone-beam CT scan protocols with higher tube voltage.
Collapse
Affiliation(s)
- K S Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - H Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A S Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - L Ritschl
- X-ray Products - Research & Development, Siemens Healthcare GmbH, Siemensstraße 1, 91301, Forchheim, Germany.
| | - M Herbst
- X-ray Products - Research & Development, Siemens Healthcare GmbH, Siemensstraße 1, 91301, Forchheim, Germany.
| | - S Kappler
- X-ray Products - Research & Development, Siemens Healthcare GmbH, Siemensstraße 1, 91301, Forchheim, Germany.
| | - S Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany.
| | - L Goertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | - L Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | - T A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - T Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - J-P Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
22
|
Petritsch B, Pannenbecker P, Weng AM, Grunz JP, Veldhoen S, Bley TA, Kosmala A. Split-filter dual-energy CT pulmonary angiography for the diagnosis of acute pulmonary embolism: a study on image quality and radiation dose. Quant Imaging Med Surg 2021; 11:1817-1827. [PMID: 33936967 DOI: 10.21037/qims-20-740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Computed tomography (CT) pulmonary angiography is the diagnostic reference standard in suspected pulmonary embolism (PE). Favorable results for dual-energy CT (DECT) images have been reported for this condition. Nowadays, dual-energy data acquisition is feasible with different technical options, including a single-source split-filter approach. Therefore, the aim of this retrospective study was to investigate image quality and radiation dose of thoracic split-filter DECT in comparison to conventional single-energy CT in patients with suspected PE. Methods A total of 110 CT pulmonary angiographies were accomplished either as standard single-energy CT with automatic tube voltage selection (ATVS) (n=58), or as split-filter DECT (n=52). Objective [pulmonary artery CT attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR)] and subjective image quality [four-point Likert scale; three readers (R)] were compared among the two study groups. Size-specific dose estimates (SSDE), dose-length-product (DLP) and volume CT dose index (CTDIvol) were assessed for radiation dose analysis. Results Split-filter DECT images yielded 67.7% higher SNR (27.0 vs. 16.1; P<0.001) and 61.9% higher CNR (22.5 vs. 13.9; P<0.001) over conventional single-energy images, whereas CT attenuation was significantly lower (344.5 vs. 428.2 HU; P=0.013). Subjective image quality was rated good or excellent in 93.0%/98.3%/77.6% (R1/R2/R3) of the single-energy CT scans, and 84.6%/82.7%/80.8% (R1/R2/R3) of the split-filter DECT scans. SSDE, DLP and CTDIvol were significantly lower for conventional single-energy CT compared to split-filter DECT (all P<0.05), which was associated with 26.7% higher SSDE. Conclusions In the diagnostic workup of acute PE, the split-filter allows for dual-energy data acquisition from single-source single-layer CT scanners. The existing opportunity to assess pulmonary "perfusion" based on analysis of iodine distribution maps is associated with higher radiation dose in terms of increased SSDE than conventional single-energy CT with ATVS. Moreover, a proportion of up to 3.8% non-diagnostic examinations in the current reference standard test for PE is not negligible.
Collapse
Affiliation(s)
- Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Aleksander Kosmala
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Ha JY, Baek HJ, Ryu KH, Cho E. Feasibility study of ultra-low-dose dedicated maxillofacial computed tomography using filter-based spectral shaping in patients with craniofacial trauma: assessment of image quality and radiation dose. Quant Imaging Med Surg 2021; 11:1292-1302. [PMID: 33816168 DOI: 10.21037/qims-20-800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In the setting of multiple trauma, radiation exposure is considered a relevant issue because patients may require repeated imaging to evaluate injuries in different body parts. Recently, spectral shaping of the X-ray beam has been shown to be beneficial in reducing radiation exposure. We investigated the clinical feasibility of a tin-filtered 100 kV protocol for the diagnostic use, compared to routine dedicated maxillofacial CT at 120 kVp in patients with craniofacial trauma; we assessed the image quality, radiation dose, and interobserver agreement. Methods We retrospectively evaluated 100 consecutive patients who underwent dedicated maxillofacial CT for craniofacial trauma. Fifty patients were examined with a tin-filtered 100 kV protocol performed using a third-generation dual source CT. The other 50 patients were examined with a standard protocol on a different scanner. Two readers independently evaluated image quality subjectively and objectively, and the interobserver agreement was also assessed. CT dose index volume (CTDIvol) and dose-length product (DLP) were recorded to compare radiation exposure. A quality-control phantom was also scanned to prospectively assess the impact of tin filtration. Results All CT scans showed diagnostic image quality for evaluating craniofacial fractures. The tin-filtered 100 kV protocol showed sufficient-to-good image quality for diagnostic use; however, overall image quality and anatomic delineation from the tin-filtered 100 kV protocol were significantly lower than from the standard protocol. Interobserver agreement was moderate to almost perfect (k=0.56-0.85). Image noises in the air, eye globe, and retrobulbar fat were comparable between the two protocols (P>0.05), whereas both signal-to-noise ratio and contrast-to-noise ratio in the eye globe and retrobulbar fat showed a significant difference (P<0.05). The tin-filtered 100 kV protocol showed a significant reduction in radiation dose compared to the standard protocol: CTDIvol, 3.33 vs. 30.5 mGy (P<0.001); and DLP, 70.70 vs. 669.43 mGy*cm (P<0.001). The phantom study also demonstrated a lower radiation dose for the tin-filter 100 kV protocol compared to the standard protocol. Conclusions Dedicated maxillofacial CT using spectral shaping with tin filtration can allow a significant reduction in radiation dose while maintaining sufficient diagnostic image quality, when compared to the standard protocol.
Collapse
Affiliation(s)
- Ji Young Ha
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.,Department of Radiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Kyeong Hwa Ryu
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Eun Cho
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| |
Collapse
|
24
|
Avrunin OG, Nosova YV, Abdelhamid IY, Pavlov SV, Shushliapina NO, Wójcik W, Kisała P, Kalizhanova A. Possibilities of Automated Diagnostics of Odontogenic Sinusitis According to the Computer Tomography Data. SENSORS 2021; 21:s21041198. [PMID: 33567752 PMCID: PMC7915799 DOI: 10.3390/s21041198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Individual anatomical features of the paranasal sinuses and dentoalveolar system, the complexity of physiological and pathophysiological processes in this area, and the absence of actual standards of the norm and typical pathologies lead to the fact that differential diagnosis and assessment of the severity of the course of odontogenic sinusitis significantly depend on the measurement methods of significant indicators and have significant variability. Therefore, an urgent task is to expand the diagnostic capabilities of existing research methods, study the significance of the measured indicators, and substantiate the expediency of their use in the diagnosis of specific pathologies in an automated mode. Methods of digital filtering, image segmentation and analysis, fluid dynamics, and statistical and discriminant analysis were used. Preliminary differential diagnosis of odontogenic sinusitis can be performed by densitemetric analysis of tomographic images of the maxillary sinuses, performed using frontal multiplanar reconstructions according to a given algorithm. The very manifestation of the characteristic changes in the densitography of the maxillary sinus allows for the initiation of certain pathological processes and permits the development of the effectiveness of the diagnosis of the pathology of the sinus sinuses, which can be realized automatically in real life.
Collapse
Affiliation(s)
- Oleg G. Avrunin
- Department of Biomedical Engineering, Faculty of Electronic and Biomedical Engineering Kharkiv National University of Radio Electronics, 61166 Kharkiv, Ukraine; (O.G.A.); (Y.V.N.); (I.Y.A.)
| | - Yana V. Nosova
- Department of Biomedical Engineering, Faculty of Electronic and Biomedical Engineering Kharkiv National University of Radio Electronics, 61166 Kharkiv, Ukraine; (O.G.A.); (Y.V.N.); (I.Y.A.)
| | - Ibrahim Younouss Abdelhamid
- Department of Biomedical Engineering, Faculty of Electronic and Biomedical Engineering Kharkiv National University of Radio Electronics, 61166 Kharkiv, Ukraine; (O.G.A.); (Y.V.N.); (I.Y.A.)
| | - Sergii V. Pavlov
- Department of Biomedical Engineering, Vinnytsia National Technical University, 21021 Vinnytsia, Ukraine;
| | - Natalia O. Shushliapina
- Department of Otorhinolaryngology, Stomatological Faculty Kharkiv National Medical University, 61022 Kharkiv, Ukraine;
| | - Waldemar Wójcik
- Institute of Electronic and Information Technologies, Faculty Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Piotr Kisała
- Institute of Electronic and Information Technologies, Faculty Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland;
- Correspondence: ; Tel.: +34-815-384-309
| | - Aliya Kalizhanova
- Institute of Information and Computational Technologies CS MES RK, 050010 Almaty, Kazakhstan;
- University of Power Engineering and Telecommunications, 050013 Almaty, Kazakhstan
| |
Collapse
|
25
|
Schulze RKW, Drage NA. Cone-beam computed tomography and its applications in dental and maxillofacial radiology. Clin Radiol 2020; 75:647-657. [PMID: 32451060 DOI: 10.1016/j.crad.2020.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Cone-beam computed tomography (CBCT) was first used in dental and maxillofacial radiology (DMFR) at the end of the 1990s. Since then, it has been successfully established as the standard three-dimensional radiographic imaging technique in DMFR, with a wide variety of applications in this field. This manuscript briefly reviews the background information on the technology and summarises available data on effective dose and dose optimisation. In addition, typical clinical applications and indications of the technique in DMFR are presented.
Collapse
Affiliation(s)
- R K W Schulze
- Department of Oral and Maxillofacial Surgery, Section of Oral Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - N A Drage
- Department of Dental and Maxillofacial Radiology, University Dental Hospital, Cardiff, UK
| |
Collapse
|