1
|
Edger PP, Iorizzo M, Bassil NV, Benevenuto J, Ferrão LFV, Giongo L, Hummer K, Lawas LMF, Leisner CP, Li C, Munoz PR, Ashrafi H, Atucha A, Babiker EM, Canales E, Chagné D, DeVetter L, Ehlenfeldt M, Espley RV, Gallardo K, Günther CS, Hardigan M, Hulse-Kemp AM, Jacobs M, Lila MA, Luby C, Main D, Mengist MF, Owens GL, Perkins-Veazie P, Polashock J, Pottorff M, Rowland LJ, Sims CA, Song GQ, Spencer J, Vorsa N, Yocca AE, Zalapa J. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. HORTICULTURE RESEARCH 2022; 9:uhac083. [PMID: 35611183 PMCID: PMC9123236 DOI: 10.1093/hr/uhac083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 06/02/2023]
Abstract
The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nahla V Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lara Giongo
- Fondazione Edmund Mach - Research and Innovation CentreItaly
| | - Kim Hummer
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Lovely Mae F Lawas
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changying Li
- Phenomics and Plant Robotics Center, College of Engineering, University of Georgia, Athens, USA
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ebrahiem M Babiker
- USDA-ARS Southern Horticultural Laboratory, Poplarville, MS 39470-0287, USA
| | - Elizabeth Canales
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Lisa DeVetter
- Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA
| | - Mark Ehlenfeldt
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Karina Gallardo
- School of Economic Sciences, Washington State University, Puyallup, WA 98371, USA
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Michael Hardigan
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Claire Luby
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | | | | | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Lisa J Rowland
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, USA
| | - Charles A Sims
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica Spencer
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Juan Zalapa
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Wang Y, Nie F, Shahid MQ, Baloch FS. Molecular footprints of selection effects and whole genome duplication (WGD) events in three blueberry species: detected by transcriptome dataset. BMC PLANT BIOLOGY 2020; 20:250. [PMID: 32493212 PMCID: PMC7268529 DOI: 10.1186/s12870-020-02461-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Both selection effects and whole genome duplication played very important roles in plant speciation and evolution, and to decipher the corresponding molecular footprint has always been a central task of geneticists. Vaccinium is species rich genus that comprised of about 450 species, and blueberry is one of the most important species of Vaccinium genus, which is gaining popularity because of high healthful value. In this article, we aimed to decipher the molecular footprints of natural selection on the single copy genes and WGD events occur in the evolutionary history of blueberry species. RESULTS We identified 30,143, 29,922 and 28,891 putative protein coding sequences from 45,535, 42,914 and 43,630 unigenes assembled from the leaves' transcriptome assembly of 19 rabbiteye (T1), 13 southern highbush (T2) and 22 northern highbush (T3) blueberry cultivars. A total of 17, 21 and 27 single copy orthologs were found to undergone positive selection in T1 versus T2, T1 versus T3, and T2 versus T3, respectively, and these orthologs were enriched in metabolic pathways including "Terpenoid backbone biosynthesis", "Valine, leucine and isoleucine biosynthesis", "Butanoate metabolism", "C5-Branched dibasic acid metabolism" "Pantothenate and CoA biosynthesis". We also detected significant molecular footprints of a recent (about 9.04 MYA), medium (about 43.44 MYA) and an ancient (about 116.39 MYA) WGD events that occurred in the evolutionary history of three blueberry species. CONCLUSION Some important functional genes revealed positive selection effect in blueberry. At least three rounds of WGD events were detected in the evolutionary history of blueberry species. Our work provides insights about the genetic mechanism of adaptive evolution in blueberry and species radiation of Vaccinium in short geological scale time.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Health and Life Science, Kaili University, Kaili City, 556011 Guizhou Province China
| | - Fei Nie
- Biological institute of Guizhou Province, Guiyang City, 556000 Guizhou Province China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong Province China
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
4
|
Wang Y, Shahid MQ, Ghouri F, Ercişli S, Baloch FS. Development of EST-based SSR and SNP markers in Gastrodia elata (herbal medicine) by sequencing, de novo assembly and annotation of the transcriptome. 3 Biotech 2019; 9:292. [PMID: 31321198 DOI: 10.1007/s13205-019-1823-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/23/2019] [Indexed: 01/28/2023] Open
Abstract
Tianma (Gastrodia elata Blume) has unique biological characteristics and high medicinal value. The wild resource of G. elata is being overutilized and should be conserved as it is already included in the list of endangered species in China. The population size of cultivated G. elata is small because of domestication bottleneck. Therefore, it is of utmost importance to evolve high-quality varieties and conserve wild resources of G. elata. In this study, we sequenced tuber transcriptomes of three major cultivated sub-species of Gastrodia elata, namely G. elata BI. f. elata, G. elata Bl. f. glauca S. Chow, and G. elata Bl. f. Viridis, and obtained about 7.8G clean data. The assembled high-quality reads of three sub-species were clustered into 56,884 unigenes. Of these, 31,224 (54.89%), 25,733 (45.24%), 22,629 (39.78%), and 11,856 (20.84%) unigenes were annotated by Nr, Swiss-Port, Eukaryotic Ortholog Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. Here, a total of 3766 EST-SSRs and 128,921 SNPs were identified from the unigenes. The results not only offer huge number of genes that were responsible for the growth, development, and metabolism of bioactive components, but also a large number of molecular markers were detected for future studies on the conservation genetics and molecular breeding of G. elata.
Collapse
|