1
|
Wen T, Li JH, Wang Q, Gao YY, Hao GF, Song BA. Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165626. [PMID: 37481085 DOI: 10.1016/j.scitotenv.2023.165626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Plant phenotyping is important for plants to cope with environmental changes and ensure plant health. Imaging techniques are perceived as the most critical and reliable tools for studying plant phenotypes. Thermal imaging has opened up new opportunities for nondestructive imaging of plant phenotyping. However, a comprehensive summary of thermal imaging in plant phenotyping is still lacking. Here we discuss the progress and future prospects of thermal imaging for assessing plant growth and stress responses. First, we classify thermal imaging into ground-based and aerial platforms based on their adaptability to different experimental environments (including laboratory, greenhouse, and field). It is convenient to collect phenotypic information of different dimensions. Second, in order to enhance the efficiency of thermal image processing, automatic algorithms based on deep learning are employed instead of traditional manual methods, greatly reducing the time cost of experiments. Considering its ease of implementation, handling and instant response, thermal imaging has been widely used in research on environmental stress, crop yield, and seed vigor. We have found that thermal imaging can detect thermal energy dissipation caused by living organisms (e.g., pests, viruses, bacteria, fungi, and oomycetes), enabling early disease diagnosis. It also recognizes changes leaf surface temperatures resulting from reduced transpiration rates caused by nutrient deficiency, drought, salinity, or freezing. Furthermore, thermal imaging predicts crop yield under different water states and forecasts the viability of dormant seeds after water absorption by monitoring temperature changes in the seeds. This work will assist biologists and agronomists in studying plant phenotypes and serve a guide for breeders to develop high-yielding, stress-tolerant, and superior crops.
Collapse
Affiliation(s)
- Ting Wen
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Jian-Hong Li
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Qi Wang
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, PR China.
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Bao-An Song
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
2
|
von Dahlen JK, Schulz K, Nicolai J, Rose LE. Global expression patterns of R-genes in tomato and potato. FRONTIERS IN PLANT SCIENCE 2023; 14:1216795. [PMID: 37965025 PMCID: PMC10641715 DOI: 10.3389/fpls.2023.1216795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023]
Abstract
Introduction As key-players of plant immunity, the proteins encoded by resistance genes (R-genes) recognize pathogens and initiate pathogen-specific defense responses. The expression of some R-genes carry fitness costs and therefore inducible immune responses are likely advantageous. To what degree inducible resistance driven by R-genes is triggered by pathogen infection is currently an open question. Methods In this study we analyzed the expression of 940 R-genes of tomato and potato across 315 transcriptome libraries to investigate how interspecific interactions with microbes influence R-gene expression in plants. Results We found that most R-genes are expressed at a low level. A small subset of R-genes had moderate to high levels of expression and were expressed across many independent libraries, irrespective of infection status. These R-genes include members of the class of genes called NRCs (NLR required for cell death). Approximately 10% of all R-genes were differentially expressed during infection and this included both up- and down-regulation. One factor associated with the large differences in R-gene expression was host tissue, reflecting a considerable degree of tissue-specific transcriptional regulation of this class of genes. Discussion These results call into question the widespread view that R-gene expression is induced upon pathogen attack. Instead, a small core set of R-genes is constitutively expressed, imparting upon the plant a ready-to-detect and defend status.
Collapse
Affiliation(s)
- Janina K. von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
- iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Kerstin Schulz
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Jessica Nicolai
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Laura E. Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
3
|
Chetta M, Cammarota AL, De Marco M, Bukvic N, Marzullo L, Rosati A. The Continuous Adaptive Challenge Played by Arboviruses: An In Silico Approach to Identify a Possible Interplay between Conserved Viral RNA Sequences and Host RNA Binding Proteins (RBPs). Int J Mol Sci 2023; 24:11051. [PMID: 37446229 DOI: 10.3390/ijms241311051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Climate change and globalization have raised the risk of vector-borne disease (VBD) introduction and spread in various European nations in recent years. In Italy, viruses carried by tropical vectors have been shown to cause viral encephalitis, one of the symptoms of arboviruses, a spectrum of viral disorders spread by arthropods such as mosquitoes and ticks. Arboviruses are currently causing alarm and attention, and the World Health Organization (WHO) has released recommendations to adopt essential measures, particularly during the hot season, to restrict the spreading of the infectious agents among breeding stocks. In this scenario, rapid analysis systems are required, because they can quickly provide information on potential virus-host interactions, the evolution of the infection, and the onset of disabling clinical symptoms, or serious illnesses. Such systems include bioinformatics approaches integrated with molecular evaluation. Viruses have co-evolved different strategies to transcribe their own genetic material, by changing the host's transcriptional machinery, even in short periods of time. The introduction of genetic alterations, particularly in RNA viruses, results in a continuous adaptive fight against the host's immune system. We propose an in silico pipeline method for performing a comprehensive motif analysis (including motif discovery) on entire genome sequences to uncover viral sequences that may interact with host RNA binding proteins (RBPs) by interrogating the database of known RNA binding proteins, which play important roles in RNA metabolism and biological processes. Indeed, viral RNA sequences, able to bind host RBPs, may compete with cellular RNAs, altering important metabolic processes. Our findings suggest that the proposed in silico approach could be a useful and promising tool to investigate the complex and multiform clinical manifestations of viral encephalitis, and possibly identify altered metabolic pathways as targets of pharmacological treatments and innovative therapeutic protocols.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Nenad Bukvic
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| |
Collapse
|
4
|
Malavika M, Prakash V, Chakraborty S. Recovery from virus infection: plant's armory in action. PLANTA 2023; 257:103. [PMID: 37115475 DOI: 10.1007/s00425-023-04137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION This review focuses on different factors involved in promoting symptom recovery in plants post-virus infection such as epigenetics, transcriptional reprogramming, phytohormones with an emphasis on RNA silencing as well as role of abiotic factors such as temperature on symptom recovery. Plants utilize several different strategies to defend themselves in the battle against invading viruses. Most of the viral proteins interact with plant proteins and interfere with molecular dynamics in a cell which eventually results in symptom development. This initial symptom development is countered by the plant utilizing various factors including the plant's adaptive immunity to develop a virus tolerant state. Infected plants can specifically target and impede the transcription of viral genes as well as degrade the viral transcripts to restrict their proliferation by the production of small-interfering RNA (siRNA) generated from the viral nucleic acid, known as virus-derived siRNA (vsiRNA). To further escalate the degradation of viral nucleic acid, secondary siRNAs are generated. The production of virus-activated siRNA (vasiRNA) from the host genome causes differential regulation of the host transcriptome which plays a major role in establishing a virus tolerant state within the infected plant. The systemic action of vsiRNAs, vasiRNA, and secondary siRNAs with the help of defense hormones like salicylic acid can curb viral proliferation, and thus the newly emerged leaves develop fewer symptoms, maintaining a state of tolerance.
Collapse
Affiliation(s)
- M Malavika
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Jiang T, Du K, Wang P, Wang X, Zang L, Peng D, Chen X, Sun G, Zhang H, Fan Z, Cao Z, Zhou T. Sugarcane mosaic virus orchestrates the lactate fermentation pathway to support its successful infection. FRONTIERS IN PLANT SCIENCE 2023; 13:1099362. [PMID: 36699858 PMCID: PMC9868461 DOI: 10.3389/fpls.2022.1099362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Viruses often establish their own infection by altering host metabolism. How viruses co-opt plant metabolism to support their successful infection remains an open question. Here, we used untargeted metabolomics to reveal that lactate accumulates immediately before and after robust sugarcane mosaic virus (SCMV) infection. Induction of lactate-involved anaerobic glycolysis is beneficial to SCMV infection. The enzyme activity and transcriptional levels of lactate dehydrogenase (LDH) were up-regulated by SCMV infection, and LDH is essential for robust SCMV infection. Moreover, LDH relocates in viral replicase complexes (VRCs) by interacting with SCMV-encoded 6K2 protein, a key protein responsible for inducing VRCs. Additionally, lactate could promote SCMV infection by suppressing plant defense responses. Taken together, we have revealed a viral strategy to manipulate host metabolism to support replication compartment but also depress the defense response during the process of infection.
Collapse
Affiliation(s)
- Tong Jiang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Kaitong Du
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Pei Wang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xinhai Wang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Lianyi Zang
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, Tai’an, China
| | - Dezhi Peng
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xi Chen
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Geng Sun
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Aknadibossian V, Huguet-Tapia JC, Golyaev V, Pooggin MM, Folimonova SY. Transcriptomic alterations in the sweet orange vasculature correlate with growth repression induced by a variant of citrus tristeza virus. Front Microbiol 2023; 14:1162613. [PMID: 37138615 PMCID: PMC10150063 DOI: 10.3389/fmicb.2023.1162613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Citrus tristeza virus (CTV, family Closteroviridae) is an economically important pathogen of citrus. CTV resides in the phloem of the infected plants and induces a range of disease phenotypes, including stem pitting and quick decline as well as a number of other deleterious syndromes. To uncover the biological processes underlying the poorly understood damaging symptoms of CTV, we profiled the transcriptome of sweet orange (Citrus sinensis) phloem-rich bark tissues of non-infected, mock-inoculated trees and trees singly infected with two distinct variants of CTV, T36 or T68-1. The T36 and T68-1 variants accumulated in the infected plants at similar titers. With that, young trees infected with T68-1 were markedly repressed in growth, while the growth rate of the trees infected with T36 was comparable to the mock-inoculated trees. Only a small number of differentially expressed genes (DEGs) were identified in the nearly asymptomatic T36-infected trees, whereas almost fourfold the number of DEGs were identified with the growth-restricting T68-1 infection. DEGs were validated using quantitative reverse transcription-PCR. While T36 did not induce many noteworthy changes, T68-1 altered the expression of numerous host mRNAs encoding proteins within significant biological pathways, including immunity and stress response proteins, papain-like cysteine proteases (PLCPs), cell-wall modifying enzymes, vascular development proteins and others. The transcriptomic alterations in the T68-1-infected trees, in particular, the strong and persistent increase in the expression levels of PLCPs, appear to contribute to the observed stem growth repression. On the other hand, analysis of the viral small interfering RNAs revealed that the host RNA silencing-based response to the infection by T36 and that by T68-1 was comparable, and thus, the induction of this antiviral mechanism may not contribute to the difference in the observed symptoms. The DEGs identified in this study promote our understanding of the underlying mechanisms of the yet unexplained growth repression induced by severe CTV isolates in sweet orange trees.
Collapse
Affiliation(s)
- Vicken Aknadibossian
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Svetlana Y. Folimonova,
| |
Collapse
|
7
|
Nebapure SM, Shankarganesh K, Rajna S, Naga KC, Pandey D, Gambhir S, Praveen KV, Subramanian S. Dynamic changes in virus-induced volatiles in cotton modulate the orientation and oviposition behavior of the whitefly Bemisia tabaci. Front Physiol 2022; 13:1017948. [PMID: 36299257 PMCID: PMC9589893 DOI: 10.3389/fphys.2022.1017948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Manipulation of insect vector behavior by virus-induced plant volatiles is well known. But how the viral disease progression alters the plant volatiles and its effect on vector behavior remains less explored. Our studies tracked changes in volatile profile in progressive infection stages of cotton leaf curl virus (CLCuV) infected plants and their effect on B. tabaci behavior. Significant differences in virus titers were noticed between progressive infection stages showing distinct symptoms. Whiteflies initially settled on CLCuV infected plants, but their preference was shifted to healthy plants over time. GC-MS analysis revealed subtle quantitative/qualitative changes in volatile organic compounds (VOCs) between the healthy and selected CLCuV infection stages. VOCs such as hexanal, (E)-2-hexen-1-ol, (+)-α-pinene, (−)-β-pinene, (Z)-3-hexen-1-ol, (+)-sylvestrene, and (1S,2E,6E, 10R)-3,7,11,11-tetramethylbicycloundeca-2,6-diene (Bicyclogermacrene) were associated with the infection stage showing upward curling of leaves; (E)-2-hexen-1-ol, β-myrcene, β-ocimene, and copaene were associated with the infection stage showing downward curling. Validation studies with eight synthetic VOCs indicated that γ-terpinene elicited attraction to B. tabaci (Olfactometric Preference Index (OPI) = 1.65), while β-ocimene exhibited strong repellence (OPI = 0.64) and oviposition reduction (66.01%–92.55%). Our studies have demonstrated that progression of CLCuV disease in cotton was associated with dynamic changes in volatile profile which influences the behavioural responses of whitefly, B.tabaci. Results have shown that VOCs such as (+)-α-pinene, (−)-β-pinene γ-Terpinene, α-guaiene; 4- hydroxy- 4 methyl-2- pentanone and β-ocimene emitted from Begomovirus infected plants could be the driving force for early attraction and later repellence/oviposition deterrence of B. tabaci on virus-infected plants. The findings of this study offer scope for the management of whitefly, B. tabaci through semiochemicals.
Collapse
Affiliation(s)
| | - Karuppan Shankarganesh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, India
| | - Salim Rajna
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Shubham Gambhir
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sabtharishi Subramanian
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sabtharishi Subramanian,
| |
Collapse
|
8
|
Alherz FA, Negm WA, Elekhnawy E, El-Masry TA, Haggag EM, Alqahtani MJ, Hussein IA. Silver Nanoparticles Prepared Using Encephalartos laurentianus De Wild Leaf Extract Have Inhibitory Activity against Candida albicans Clinical Isolates. J Fungi (Basel) 2022; 8:jof8101005. [PMID: 36294570 PMCID: PMC9604723 DOI: 10.3390/jof8101005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a major human opportunistic pathogen causing infections, which range from cutaneous to invasive systemic infections. Herein, the antifungal and anti-biofilm potential of silver nanoparticles (AgNPs) green synthesized in the presence of Encephalartos laurentianus leaf extract (ELLE) were investigated. The bioactive chemicals of ELLE, including phenolics, flavonoids, and glycosides were identified and quantified for the first time. AgNPs showed minimum inhibitory concentration (MIC) values against C. albicans clinical isolates ranging from 8 to 256 µg/mL. In addition, AgNPs significantly decreased biofilm formation. The impact of AgNPs on the expression of the genes encoding biofilm formation was assessed using qRT-PCR. AgNPs had a beneficial role in the macroscopic wound healing, and they resulted in complete epithelization without any granulation tissue or inflammation. Treatment with AgNPs resulted in negative immunostaining of tumor necrosis factor-α. The levels of the inflammation markers, interleukin-6 and interleukin-1β, significantly decreased (p < 0.05) in the AgNPs-treated group. There was also a pronounced increase in the gene expression of fibronectin and platelet-derived growth factor in the wound tissues. Thus, AgNPs synthesized using ELLE may be a promising antifungal and wound healing agent.
Collapse
Affiliation(s)
- Fatemah A. Alherz
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (W.A.N.); (E.E.)
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (W.A.N.); (E.E.)
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Eman M. Haggag
- Department of Medical Microbiology and Immunology, Faculty of Medicine (Kasr Al Aini hospitals), Cairo University, Giza 12622, Egypt
| | - Moneerah J. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
9
|
Kondić-Špika A, Mikić S, Mirosavljević M, Trkulja D, Marjanović Jeromela A, Rajković D, Radanović A, Cvejić S, Glogovac S, Dodig D, Božinović S, Šatović Z, Lazarević B, Šimić D, Novoselović D, Vass I, Pauk J, Miladinović D. Crop breeding for a changing climate in the Pannonian region: towards integration of modern phenotyping tools. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5089-5110. [PMID: 35536688 DOI: 10.1093/jxb/erac181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
The Pannonian Plain, as the most productive region of Southeast Europe, has a long tradition of agronomic production as well as agronomic research and plant breeding. Many research institutions from the agri-food sector of this region have a significant impact on agriculture. Their well-developed and fruitful breeding programmes resulted in productive crop varieties highly adapted to the specific regional environmental conditions. Rapid climatic changes that occurred during the last decades led to even more investigations of complex interactions between plants and their environments and the creation of climate-smart and resilient crops. Plant phenotyping is an essential part of botanical, biological, agronomic, physiological, biochemical, genetic, and other omics approaches. Phenotyping tools and applied methods differ among these disciplines, but all of them are used to evaluate and measure complex traits related to growth, yield, quality, and adaptation to different environmental stresses (biotic and abiotic). During almost a century-long period of plant breeding in the Pannonian region, plant phenotyping methods have changed, from simple measurements in the field to modern plant phenotyping and high-throughput non-invasive and digital technologies. In this review, we present a short historical background and the most recent developments in the field of plant phenotyping, as well as the results accomplished so far in Croatia, Hungary, and Serbia. Current status and perspectives for further simultaneous regional development and modernization of plant phenotyping are also discussed.
Collapse
Affiliation(s)
- Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
- Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops-Climate Crops, Novi Sad, Serbia
| | - Sanja Mikić
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
- Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops-Climate Crops, Novi Sad, Serbia
| | - Milan Mirosavljević
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
- Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops-Climate Crops, Novi Sad, Serbia
| | | | - Ana Marjanović Jeromela
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
- Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops-Climate Crops, Novi Sad, Serbia
| | - Dragana Rajković
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
- Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops-Climate Crops, Novi Sad, Serbia
| | - Aleksandra Radanović
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
- Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops-Climate Crops, Novi Sad, Serbia
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
- Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops-Climate Crops, Novi Sad, Serbia
| | | | - Dejan Dodig
- Maize Research Institute 'Zemun Polje', Belgrade, Serbia
| | | | - Zlatko Šatović
- University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
| | - Boris Lazarević
- University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
| | - Domagoj Šimić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
- Agricultural Institute Osijek, Osijek, Croatia
| | - Dario Novoselović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
- Agricultural Institute Osijek, Osijek, Croatia
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - János Pauk
- Cereal Research Non-profit Ltd., Szeged, Hungary
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
- Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops-Climate Crops, Novi Sad, Serbia
| |
Collapse
|
10
|
Maravi DK, Kumar S, Sahoo L. NMR-Based Metabolomic Profiling of Mungbean Infected with Mungbean Yellow Mosaic India Virus. Appl Biochem Biotechnol 2022; 194:5808-5826. [PMID: 35819689 DOI: 10.1007/s12010-022-04074-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Mungbean is an important legume mainly cultivated in Southeast Asia known for cheap source of food protein. Yellow mosaic disease (YMD) of mungbean is one of the most damaging diseases caused by mungbean yellow mosaic virus (MYMV) and mungbean yellow mosaic India virus (MYMIV) in India. The genetic basis of YMD resistance of mungbean is not well studied yet. Our present studies aimed to explore the genetic basis of YMD resistance through molecular, biochemical and metabolomics approach. Molecular analysis of YMV-infected mungbean plant materials revealed the presence of MYMIV. Chlorophyll contents were estimated as mosaic symptoms that cause chlorosis and necrosis in infected leaves. Chlorophyll a, b and total chlorophyll content were significantly reduced by 27-55% in infected samples compared non-infected control samples. 1H NMR-based metabolomic profiling of virus-infected mungbean were carried out, and we found that vital changes occurred during the development of MYMIV infection in mungbean. A total of fifty metabolites were identified in mungbean leaf samples. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) separated the severely infected sample from the non-infected samples. Orthogonal partial least discrimination analysis (OPLS-DA) revealed significant differences in MYMIV-infected and non-infected control samples. The featured metabolites in MYMIV infected and control samples were amino acids, carbohydrates, and organic acids. Relative abundance of sucrose, γ-amino butyric acid (GABA), proline, alanine, phenylalanine, tryptophan, pyruvate, ascorbate, and citrates were found as differential metabolites. Our results suggest that metabolic changes in infected mungbean samples is related to the viral acquisition. The present study may help in better understanding the metabolic alterations during biotic stress in mungbean.
Collapse
Affiliation(s)
- Devendra Kumar Maravi
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, India, 781039
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India, 781039
| | - Sanjeev Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India, 781039
| | - Lingaraj Sahoo
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, India, 781039.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India, 781039.
| |
Collapse
|
11
|
Gómez G, Marquez-Molins J, Martinez G, Pallas V. Plant epigenome alterations: an emergent player in viroid-host interactions. Virus Res 2022; 318:198844. [DOI: 10.1016/j.virusres.2022.198844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
|
12
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
13
|
Valmonte-Cortes GR, Lilly ST, Pearson MN, Higgins CM, MacDiarmid RM. The Potential of Molecular Indicators of Plant Virus Infection: Are Plants Able to Tell Us They Are Infected? PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020188. [PMID: 35050076 PMCID: PMC8777591 DOI: 10.3390/plants11020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 05/06/2023]
Abstract
To our knowledge, there are no reports that demonstrate the use of host molecular markers for the purpose of detecting generic plant virus infection. Two approaches involving molecular indicators of virus infection in the model plant Arabidopsis thaliana were examined: the accumulation of small RNAs (sRNAs) using a microfluidics-based method (Bioanalyzer); and the transcript accumulation of virus-response related host plant genes, suppressor of gene silencing 3 (AtSGS3) and calcium-dependent protein kinase 3 (AtCPK3) by reverse transcriptase-quantitative PCR (RT-qPCR). The microfluidics approach using sRNA chips has previously demonstrated good linearity and good reproducibility, both within and between chips. Good limits of detection have been demonstrated from two-fold 10-point serial dilution regression to 0.1 ng of RNA. The ratio of small RNA (sRNA) to ribosomal RNA (rRNA), as a proportion of averaged mock-inoculation, correlated with known virus infection to a high degree of certainty. AtSGS3 transcript decreased between 14- and 28-days post inoculation (dpi) for all viruses investigated, while AtCPK3 transcript increased between 14 and 28 dpi for all viruses. A combination of these two molecular approaches may be useful for assessment of virus-infection of samples without the need for diagnosis of specific virus infection.
Collapse
Affiliation(s)
- Gardette R. Valmonte-Cortes
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- Correspondence:
| | - Sonia T. Lilly
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| | - Michael N. Pearson
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| | - Colleen M. Higgins
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| |
Collapse
|
14
|
Investigation of P1/HC-Pro-Mediated ABA/Calcium Signaling Responses via Gene Silencing through High- and Low-Throughput RNA-seq Approaches. Viruses 2021; 13:v13122349. [PMID: 34960618 PMCID: PMC8708664 DOI: 10.3390/v13122349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
The P1/HC-Pro viral suppressor of potyvirus suppresses posttranscriptional gene silencing (PTGS). The fusion protein of P1/HC-Pro can be cleaved into P1 and HC-Pro through the P1 self-cleavage activity, and P1 is necessary and sufficient to enhance PTGS suppression of HC-Pro. To address the modulation of gene regulatory relationships induced by turnip mosaic virus (TuMV) P1/HC-Pro (P1/HC-ProTu), a comparative transcriptome analysis of three types of transgenic plants (P1Tu, HC-ProTu, and P1/HC-ProTu) were conducted using both high-throughput (HTP) and low-throughput (LTP) RNA-Seq strategies. The results showed that P1/HC-ProTu disturbed the endogenous abscisic acid (ABA) accumulation and genes in the signaling pathway. Additionally, the integrated responses of stress-related genes, in particular to drought stress, cold stress, senescence, and stomatal dynamics, altered the expressions by the ABA/calcium signaling. Crosstalk among the ABA, jasmonic acid, and salicylic acid pathways might simultaneously modulate the stress responses triggered by P1/HC-ProTu. Furthermore, the LTP network analysis revealed crucial genes in common with those identified by the HTP network in this study, demonstrating the effectiveness of the miniaturization of the HTP profile. Overall, our findings indicate that P1/HC-ProTu-mediated suppression in RNA silencing altered the ABA/calcium signaling and a wide range of stress responses.
Collapse
|
15
|
Variability in expression profiles of Betulaceae spring pollen allergens in Central Europe region. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00744-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Yu J, Kim KH. A Phenome-Wide Association Study of the Effects of Fusarium graminearum Transcription Factors on Fusarium Graminearum Virus 1 Infection. Front Microbiol 2021; 12:622261. [PMID: 33643250 PMCID: PMC7904688 DOI: 10.3389/fmicb.2021.622261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
The Fusarium graminearum virus 1 (FgV1) causes noticeable phenotypic changes such as reduced mycelial growth, increase pigmentation, and reduced pathogenicity in its host fungi, Fusarium graminearum. Previous study showed that the numerous F. graminearum genes including regulatory factors were differentially expressed upon FgV1 infection, however, we have limited knowledge on the effect(s) of specific transcription factor (TF) during FgV1 infection in host fungus. Using gene-deletion mutant library of 657 putative TFs in F. graminearum, we transferred FgV1 by hyphal anastomosis to screen transcription factors that might be associated with viral replication or symptom induction. FgV1-infected TF deletion mutants were divided into three groups according to the mycelial growth phenotype compare to the FgV1-infected wild-type strain (WT-VI). The FgV1-infected TF deletion mutants in Group 1 exhibited slow or weak mycelial growth compare to that of WT-VI on complete medium at 5 dpi. In contrast, Group 3 consists of virus-infected TF deletion mutants showing faster mycelial growth and mild symptom compared to that of WT-VI. The hyphal growth of FgV1-infected TF deletion mutants in Group 2 was not significantly different from that of WT-VI. We speculated that differences of mycelial growth among the FgV1-infected TF deletion mutant groups might be related with the level of FgV1 RNA accumulations in infected host fungi. By conducting real-time quantitative reverse transcription polymerase chain reaction, we observed close association between FgV1 RNA accumulation and phenotypic differences of FgV1-infected TF deletion mutants in each group, i.e., increased and decreased dsRNA accumulation in Group 1 and Group 3, respectively. Taken together, our analysis provides an opportunity to identify host's regulator(s) of FgV1-triggered signaling and antiviral responses and helps to understand complex regulatory networks between FgV1 and F. graminearum interaction.
Collapse
Affiliation(s)
- Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Kook-Hyung Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Leonetti P, Ghasemzadeh A, Consiglio A, Gursinsky T, Behrens S, Pantaleo V. Endogenous activated small interfering RNAs in virus-infected Brassicaceae crops show a common host gene-silencing pattern affecting photosynthesis and stress response. THE NEW PHYTOLOGIST 2021; 229:1650-1664. [PMID: 32945560 PMCID: PMC7821159 DOI: 10.1111/nph.16932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
Viral infections are accompanied by a massive production of small interfering RNAs (siRNAs) of plant origin, such as virus-activated (va)siRNAs, which drive the widespread silencing of host gene expression, and whose effects in plant pathogen interactions remain unknown. By combining phenotyping and molecular analyses, we characterized vasiRNAs that are associated with typical mosaic symptoms of cauliflower mosaic virus infection in two crops, turnip (Brassica rapa) and oilseed rape (Brassica napus), and the reference plant Arabidopsis thaliana. We identified 15 loci in the three infected plant species, whose transcripts originate vasiRNAs. These loci appear to be generally affected by virus infections in Brassicaceae and encode factors that are centrally involved in photosynthesis and stress response, such as Rubisco activase (RCA), senescence-associated protein, heat shock protein HSP70, light harvesting complex, and membrane-related protein CP5. During infection, the expression of these factors is significantly downregulated, suggesting that their silencing is a central component of the plant's response to virus infections. Further findings indicate an important role for 22 nt long vasiRNAs in the plant's endogenous RNA silencing response. Our study considerably enhances knowledge about the new class of vasiRNAs that are triggered in virus-infected plants and will help to advance strategies for the engineering of gene clusters involved in the development of crop diseases.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food SciencesInstitute for Sustainable Plant ProtectionBari UnitCNRBari70126Italy
| | - Aysan Ghasemzadeh
- Department of Biology, Agricultural and Food SciencesInstitute for Sustainable Plant ProtectionBari UnitCNRBari70126Italy
- Department of Plant PathologyFaculty of AgricultureTarbiat Modares UniversityTehran14115‐111Iran
- Institute of Biochemistry and Biotechnology (NFI)Section Microbial BiotechnologyMartin Luther University Halle‐WittenbergHalle/SaaleD‐06120Germany
| | - Arianna Consiglio
- Department of Biomedical SciencesInstitute for Biomedical TechnologiesBari UnitCNRBari70126Italy
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology (NFI)Section Microbial BiotechnologyMartin Luther University Halle‐WittenbergHalle/SaaleD‐06120Germany
| | - Sven‐Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI)Section Microbial BiotechnologyMartin Luther University Halle‐WittenbergHalle/SaaleD‐06120Germany
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food SciencesInstitute for Sustainable Plant ProtectionBari UnitCNRBari70126Italy
| |
Collapse
|
18
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
19
|
Medzihradszky A, Gyula P, Sós‐Hegedűs A, Szittya G, Burgyán J. Transcriptome reprogramming in the shoot apical meristem of CymRSV-infected Nicotiana benthamiana plants associates with viral exclusion and the lack of recovery. MOLECULAR PLANT PATHOLOGY 2019; 20:1748-1758. [PMID: 31560831 PMCID: PMC6859499 DOI: 10.1111/mpp.12875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In some plant-virus interactions plants show a sign of healing from virus infection, a phenomenon called symptom recovery. It is assumed that the meristem exclusion of the virus is essential to this process. The discovery of RNA silencing provided a possible mechanism to explain meristem exclusion and recovery. Here we show evidence that silencing is not the reason for meristem exclusion in Nicotiana benthamiana plants infected with Cymbidium ringspot virus (CymRSV). Transcriptome analysis followed by in situ hybridization shed light on the changes in gene expression in the shoot apical meristem (SAM) on virus infection. We observed the down-regulation of meristem-specific genes, including WUSCHEL (WUS). However, WUS was not down-regulated in the SAM of plants infected with meristem-invading viruses such as turnip vein-clearing virus (TVCV) and cucumber mosaic virus (CMV). Moreover, there is no connection between loss of meristem function and fast shoot necrosis since TVCV necrotized the shoot while CMV did not. Our findings suggest that the observed transcriptional changes on virus infection in the shoot are key factors in tip necrosis and symptom recovery. We observed a lack of GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDH) expression in tissues around the meristem, which likely stops virus replication and spread into the meristem.
Collapse
Affiliation(s)
- Anna Medzihradszky
- Department of Plant BiotechnologyNational Agricultural Research and Innovation CentreSzent‐Györgyi Albert u. 4Gödöllő2100Hungary
| | - Péter Gyula
- Department of Plant BiotechnologyNational Agricultural Research and Innovation CentreSzent‐Györgyi Albert u. 4Gödöllő2100Hungary
| | - Anita Sós‐Hegedűs
- Department of Plant BiotechnologyNational Agricultural Research and Innovation CentreSzent‐Györgyi Albert u. 4Gödöllő2100Hungary
| | - György Szittya
- Department of Plant BiotechnologyNational Agricultural Research and Innovation CentreSzent‐Györgyi Albert u. 4Gödöllő2100Hungary
| | - József Burgyán
- Department of Plant BiotechnologyNational Agricultural Research and Innovation CentreSzent‐Györgyi Albert u. 4Gödöllő2100Hungary
| |
Collapse
|