1
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
2
|
Daniele A, Lucas SJE, Rendeiro C. Detrimental effects of physical inactivity on peripheral and brain vasculature in humans: Insights into mechanisms, long-term health consequences and protective strategies. Front Physiol 2022; 13:998380. [PMID: 36237532 PMCID: PMC9553009 DOI: 10.3389/fphys.2022.998380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The growing prevalence of physical inactivity in the population highlights the urgent need for a more comprehensive understanding of how sedentary behaviour affects health, the mechanisms involved and what strategies are effective in counteracting its negative effects. Physical inactivity is an independent risk factor for different pathologies including atherosclerosis, hypertension and cardiovascular disease. It is known to progressively lead to reduced life expectancy and quality of life, and it is the fourth leading risk factor for mortality worldwide. Recent evidence indicates that uninterrupted prolonged sitting and short-term inactivity periods impair endothelial function (measured by flow-mediated dilation) and induce arterial structural alterations, predominantly in the lower body vasculature. Similar effects may occur in the cerebral vasculature, with recent evidence showing impairments in cerebral blood flow following prolonged sitting. The precise molecular and physiological mechanisms underlying inactivity-induced vascular dysfunction in humans are yet to be fully established, although evidence to date indicates that it may involve modulation of shear stress, inflammatory and vascular biomarkers. Despite the steady increase in sedentarism in our societies, only a few intervention strategies have been investigated for their efficacy in counteracting the associated vascular impairments. The current review provides a comprehensive overview of the evidence linking acute and short-term physical inactivity to detrimental effects on peripheral, central and cerebral vascular health in humans. We further examine the underlying molecular and physiological mechanisms and attempt to link these to long-term consequences for cardiovascular health. Finally, we summarize and discuss the efficacy of lifestyle interventions in offsetting the negative consequences of physical inactivity.
Collapse
Affiliation(s)
- Alessio Daniele
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Catarina Rendeiro,
| |
Collapse
|
3
|
Han WW, Wang XR, He YF, Zhang HS, Cong X, Xiang RL, Wu LL, Yu GY, Liu LM, Zhang Y. Soluble epoxide hydrolase inhibitor, t-AUCB, improves salivary gland function by ameliorating endothelial injury. Life Sci 2022; 308:120942. [PMID: 36096247 DOI: 10.1016/j.lfs.2022.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
AIMS Inhibitor of soluble epoxide hydrolase (t-AUCB) has been used in the experimental therapy of hypertension. This study aimed to investigate whether the secretion of submandibular glands (SMGs) altered in renal hypertensive rats, and to explore whether t-AUCB could improve the salivary secretion. MAIN METHODS 2-kidney 1-clip Sprague-Dawley rats were used as renal hypertensive animals. t-AUCB treatment was given for 1 week after 8 weeks modeling. Blood pressure, blood perfusion and the secretion of SMGs, and endothelium-dependent relaxation of external maxillary artery were measured to investigate the effects of t-AUCB on the vascular tone and the secretion of SMGs in renal hypertensive rats. SMGs were collected for histological evaluation and the internal arteries were dissected for primary endothelial cells culture. KEY FINDINGS The blood perfusion and flow rate of SMGs in the renal hypertensive rats were significantly lower than those in the controls. Endothelium-dependent relaxation of the external maxillary artery and AMPK/Akt/eNOS signaling was impaired in hypertensive rats. The glandular morphology and the concentration of salivary ions did not change obviously. t-AUCB treatment ameliorated the secretion of SMGs, the blood perfusion, and the dysfunction of endothelium-dependent relaxation of the external maxillary artery by activating the AMPK/Akt/eNOS pathway in hypertensive rats. SIGNIFICANCE t-AUCB increases the blood perfusion through ameliorating dysfunction of endothelium-dependent relaxation of SMGs arteries and thus improves the hyposecretion of SMGs in hypertensive rats.
Collapse
Affiliation(s)
- Wen-Wen Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Xiao-Rui Wang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yu-Feng He
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Han-Shu Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Li-Mei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| |
Collapse
|