1
|
Michel CJ. Genes on the circular code alphabet. Biosystems 2021; 206:104431. [PMID: 33894288 DOI: 10.1016/j.biosystems.2021.104431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
The X motifs, motifs from the circular code X, are enriched in the (protein coding) genes of bacteria, archaea, eukaryotes, plasmids and viruses, moreover, in the minimal gene set belonging to the three domains of life, as well as in tRNA and rRNA sequences. They allow to retrieve, maintain and synchronize the reading frame in genes, and contribute to the regulation of gene expression. These results lead here to a theoretical study of genes based on the circular code alphabet. A new occurrence relation of the circular code X under the hypothesis of an equiprobable (balanced) strand pairing is given. Surprisingly, a statistical analysis of a large set of bacterial genes retrieves this relation on the circular code alphabet, but not on the DNA alphabet. Furthermore, the circular code X has the strongest balanced circular code pairing among 216 maximal C3 self-complementary trinucleotide circular codes, a new property of this circular code X. As an application of this theory, different tRNAs studied on the circular code alphabet reveal an unexpected stem structure. Thus, the circular code X would have constructed a coding stem in tRNAs as an outline of the future gene structure and the future DNA double helix.
Collapse
Affiliation(s)
- Christian J Michel
- Theoretical Bioinformatics, ICube, CNRS, University of Strasbourg, 300 Boulevard Sébastien Brant, 67400 Illkirch, France.
| |
Collapse
|
2
|
Thompson JD, Ripp R, Mayer C, Poch O, Michel CJ. Potential role of the X circular code in the regulation of gene expression. Biosystems 2021; 203:104368. [PMID: 33567309 DOI: 10.1016/j.biosystems.2021.104368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
The X circular code is a set of 20 trinucleotides (codons) that has been identified in the protein-coding genes of most organisms (bacteria, archaea, eukaryotes, plasmids, viruses). It has been shown previously that the X circular code has the important mathematical property of being an error-correcting code. Thus, motifs of the X circular code, i.e. a series of codons belonging to X and called X motifs, allow identification and maintenance of the reading frame in genes. X motifs are significantly enriched in protein-coding genes, but have also been identified in many transfer RNA (tRNA) genes and in important functional regions of the ribosomal RNA (rRNA), notably in the peptidyl transferase center and the decoding center. Here, we investigate the potential role of X motifs as functional elements of protein-coding genes. First, we identify the codons of the X circular code which are frequent or rare in each domain of life (archaea, bacteria, eukaryota) and show that, for the amino acids with the highest codon bias, the preferred codon is often an X codon. We also observe a correlation between the 20 X codons and the optimal codons/dicodons that have been shown to influence translation efficiency. Then, we examined recently published experimental results concerning gene expression levels in diverse organisms. The approach used is the analysis of X motifs according to their density ds(X), i.e. the number of X motifs per kilobase in a gene sequence s. Surprisingly, this simple parameter identifies several unexpected relations between the X circular code and gene expression. For example, the X motifs are significantly enriched in the minimal gene set belonging to the three domains of life, and in codon-optimized genes. Furthermore, the density of X motifs generally correlates with experimental measures of translation efficiency and mRNA stability. Taken together, these results lead us to propose that the X motifs may represent a genetic signal contributing to the maintenance of the correct reading frame and the optimization and regulation of gene expression.
Collapse
Affiliation(s)
- Julie D Thompson
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| | - Raymond Ripp
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| | - Claudine Mayer
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France; Unité de Microbiologie Structurale, Institut Pasteur, CNRS, 75724, Paris Cedex 15, France; Université Paris Diderot, Sorbonne Paris Cité, 75724, Paris Cedex 15, France.
| | - Olivier Poch
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| | - Christian J Michel
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Demongeot J, Moreira A, Seligmann H. Negative CG dinucleotide bias: An explanation based on feedback loops between Arginine codon assignments and theoretical minimal RNA rings. Bioessays 2020; 43:e2000071. [PMID: 33319381 DOI: 10.1002/bies.202000071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Theoretical minimal RNA rings are candidate primordial genes evolved for non-redundant coding of the genetic code's 22 coding signals (one codon per biogenic amino acid, a start and a stop codon) over the shortest possible length: 29520 22-nucleotide-long RNA rings solve this min-max constraint. Numerous RNA ring properties are reminiscent of natural genes. Here we present analyses showing that all RNA rings lack dinucleotide CG (a mutable, chemically instable dinucleotide coding for Arginine), bearing a resemblance to known CG-depleted genomes. CG in "incomplete" RNA rings (not coding for all coding signals, with only 3-12 nucleotides) gradually decreases towards CG absence in complete, 22-nucleotide-long RNA rings. Presumably, feedback loops during RNA ring growth during evolution (when amino acid assignment fixed the genetic code) assigned Arg to codons lacking CG (AGR) to avoid CG. Hence, as a chemical property of base pairs, CG mutability restructured the genetic code, thereby establishing itself as genetically encoded biological information.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France
| | - Andrés Moreira
- Departamento de Informática, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France.,The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Seligmann H, Warthi G. Natural pyrrolysine-biased translation of stop codons in mitochondrial peptides entirely coded by expanded codons. Biosystems 2020; 196:104180. [PMID: 32534170 DOI: 10.1016/j.biosystems.2020.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
During the noncanonical deletion transcription, k nucleotides are systematically skipped/deleted after each transcribed trinucleotide producing deletion-RNAs (delRNAs). Peptides matching delRNAs either result from (a) canonical translation of delRNAs; or (b) noncanonical translation of regular transcripts along expanded codons. Only along frame "0" (start site) (a) and (b) produce identical peptides. Here, mitochondrial mass spectrometry data analyses assume expanded codon/del-transcription with 3 + k (k from 0 to 12) nucleotides. Detected peptides map preferentially on previously identified delRNAs. More peptides were detected for k (1-12) when del-transcriptional and expanded codon translations start sites coincide (i.e. the 0th frame) than for frames +1 or +2. Hence, both (a) and (b) produced peptides identified here. Biases for frame 0 decrease for k > 2, reflecting codon/anticodon expansion limits. Further analyses find preferential pyrrolysine insertion at stop codons, suggesting Pyl-specific mitochondrial suppressor tRNAs loaded by Pyl-specific tRNA synthetases with unknown origins. Pyl biases at stops are stronger for regular than expanded codons suggesting that Pyl-tRNAs are less competitive with near-cognate tRNAs in expanded codon contexts. Statistical biases for these findings exclude that detected peptides are experimental and/or bioinformatic artefacts implying both del-transcription and expanded codons translation occur in human mitochondria.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel; Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Ganesh Warthi
- Aix-Marseille University, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France.
| |
Collapse
|
5
|
Demongeot J, Seligmann H. Theoretical minimal RNA rings mimick molecular evolution before tRNA-mediated translation: codon-amino acid affinities increase from early to late RNA rings. C R Biol 2020; 343:111-122. [PMID: 32720493 DOI: 10.5802/crbiol.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Nucleotide affinities for noncovalent interactions with amino acids produce associations between mRNAs and cognate peptides, potentially regulating ribosomal translation. Correlations between nucleotide affinities and residue hydrophobicity are explored for 25 theoretical minimal RNA rings, 22 nucleotide-long RNAs designed in silico to code for each amino acid once after three translation rounds, and forming stem-loop hairpins. This design presumably mimicks life's first RNAs. RNA rings resemble consensual tRNAs, suggesting proto-tRNA function, predicted anticodon and cognate amino acid. The 25 RNA rings and their presumed evolutionary order, deduced from the genetic code integration order of the amino acid cognate to their predicted anticodon, produces noteworthy associations with several ancient properties of the cell's translational machinery. Here we use this system to explore the evolution of codon affinity-residue hydrophobicity correlations, assuming these reflect pre-tRNA and pre-ribosomal translations. This hypothesis expects that correlations decrease with genetic code inclusion orders of RNA ring cognates. RNA ring associations between nucleotide affinities and residue hydrophobicities resemble those from modern natural genes/proteins. Association strengths decrease with genetic code inclusion ranks of proto-tRNA cognate amino acids. In silico design of minimal RNA rings didn't account for affinities between RNA and peptides coded by these RNAs. Yet, interactions between RNA rings and translated cognate peptides resemble modern natural genes. This property is strongest for ancient RNA rings, weakest for recent RNA rings, spanning a period during which modern tRNA- and ribosome-based translation presumably evolved. Results indicate that translation lacking tRNA-like adaptors based on codon-amino acid affinities and the genetic code pre-existed tRNA-mediated translation. Theoretical minimal RNA rings appear valid prebiotic peptide-RNA world models for the transition between pre-tRNA- and tRNA-mediated translations.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700 La Tronche, France
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700 La Tronche, France.,The National Natural History Collections, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| |
Collapse
|
6
|
Demongeot J, Seligmann H. Deamination gradients within codons after 1<->2 position swap predict amino acid hydrophobicity and parallel β-sheet conformational preference. Biosystems 2020; 191-192:104116. [PMID: 32081715 DOI: 10.1016/j.biosystems.2020.104116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Deaminations C->T and A->G are frequent mutations producing nucleotide content gradients across genomes proportional to singlestrandedness during replication/transcription. Hence, within single codons, deamination risks increase from first to third codon positions, while second codon positions are functionally most crucial. Here genetic codes are analyzed assuming that after anticodons protected codons from deaminations, first and second codon positions swapped (N2N1N3->N1N2N3), with lowest deamination risks for N2 in presumed primitive N2N1N3 codons. N2N1N3, not standard N1N2N3, codon structure minimizes deaminations inversely proportionally to cognate amino acid hydrophobicity and parallel betasheet conformational preference. For N1N2N3, deamination minimization increases with genetic code integration order of cognate amino acids: during the presumed N2N1N3->N1N2N3 codon structure transition, protein synthesis combined direct codon-amino acid interactions for late amino acids and tRNA-based translation for early amino acids. Hence N2N1N3 codons would correspond to tRNA-free translation by spontaneous codon-amino acid affinities, and tRNA-mediated translation presumably caused N2N1N3->N1N2N3 swaps. Results show that rational, not arbitrary rules link codon and amino acid structures. Some analyses detect mitochondrial RNAs and peptides in public data corresponding to systematic position swaps, suggesting occasional swapping polymerase activity.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel.
| |
Collapse
|
7
|
Warthi G, Fournier PE, Seligmann H. Systematic Nucleotide Exchange Analysis of ESTs From the Human Cancer Genome Project Report: Origins of 347 Unknown ESTs Indicate Putative Transcription of Non-Coding Genomic Regions. Front Genet 2020; 11:42. [PMID: 32117454 PMCID: PMC7027195 DOI: 10.3389/fgene.2020.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Expressed sequence tags (ESTs) provide an imprint of cellular RNA diversity irrespectively of sequence homology with template genomes. NCBI databases include many unknown RNAs from various normal and cancer cells. These are usually ignored assuming sequencing artefacts or contamination due to their lack of sequence homology with template DNA. Here, we report genomic origins of 347 ESTs previously assumed artefacts/unknown, from the FAPESP/LICR Human Cancer Genome Project. EST template detection uses systematic nucleotide exchange analyses called swinger transformations. Systematic nucleotide exchanges replace systematically particular nucleotides with different nucleotides. Among 347 unknown ESTs, 51 ESTs match mitogenome transcription, 17 and 2 ESTs are from nuclear chromosome non-coding regions, and uncharacterized nuclear genes. Identified ESTs mapped on 205 protein-coding genes, 10 genes had swinger RNAs in several biosamples. Whole cell transcriptome searches for 17 ESTs mapping on non-coding regions confirmed their transcription. The 10 swinger-transcribed genes identified more than once associate with cancer induction and progression, suggesting swinger transformation occurs mainly in highly transcribed genes. Swinger transformation is a unique method to identify noncanonical RNAs obtained from NGS, which identifies putative ncRNA transcribed regions. Results suggest that swinger transcription occurs in highly active genes in normal and genetically unstable cancer cells.
Collapse
Affiliation(s)
- Ganesh Warthi
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, La Tronche, France
| |
Collapse
|
8
|
Pentamers with Non-redundant Frames: Bias for Natural Circular Code Codons. J Mol Evol 2020; 88:194-201. [DOI: 10.1007/s00239-019-09925-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
|
9
|
Seligmann H, Warthi G. Chimeric Translation for Mitochondrial Peptides: Regular and Expanded Codons. Comput Struct Biotechnol J 2019; 17:1195-1202. [PMID: 31534643 PMCID: PMC6742854 DOI: 10.1016/j.csbj.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Frameshifting protein translation occasionally results from insertion of amino acids at isolated mono- or dinucleotide-expanded codons by tRNAs with expanded anticodons. Previous analyses of two different types of human mitochondrial MS proteomic data (Fisher and Waters technologies) detect peptides entirely corresponding to expanded codon translation. Here, these proteomic data are reanalyzed searching for peptides consisting of at least eight consecutive amino acids translated according to regular tricodons, and at least eight adjacent consecutive amino acids translated according to expanded codons. Both datasets include chimerically translated peptides (mono- and dinucleotide expansions, 42 and 37, respectively). The regular tricodon-encoded part of some chimeric peptides corresponds to standard human mitochondrial proteins (mono- and dinucleotide expansions, six (AT6, CytB, ND1, 2xND2, ND5) and one (ND1), respectively). Chimeric translation probably increases the diversity of mitogenome-encoded proteins, putatively producing functional proteins. These might result from translation by tRNAs with expanded anticodons, or from regular tricodon translation of RNAs where transcription/posttranscriptional edition systematically deleted mono- or dinucleotides after each trinucleotide. The pairwise matched combination of adjacent peptide parts translated from regular and expanded codons strengthens the hypothesis that translation of stretches of consecutive expanded codons occurs. Results indicate statistical translation producing distributions of alternative proteins. Genetic engineering should account for potential unexpected, unwanted secondary products.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille University, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
10
|
Demongeot J, Seligmann H. Theoretical minimal RNA rings designed according to coding constraints mimic deamination gradients. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2019; 106:44. [DOI: 10.1007/s00114-019-1638-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
|