1
|
Li H, Tan J, Li X, Lamont SJ, Sun H. Integrated Transcriptome Analysis Reveals the Lung miRNA-mRNA Regulatory Network Associated with Avian Pathogenic E. coli Infection. Vet Sci 2025; 12:95. [PMID: 40005855 PMCID: PMC11860573 DOI: 10.3390/vetsci12020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Avian pathogenic E. coli (APEC), one of the most common pathogens, can cause localized or systemic infections and lead to significant economic losses in the poultry industry annually. Recently, evidence suggests that microRNAs (miRNAs) play important roles in the host immune response to bacterial infection by targeting mRNAs. However, few studies have examined the immune mechanisms of miRNAs and mRNAs in chicken lungs following APEC infection. Herein, hematoxylin-eosin staining and qRT-PCR were employed to investigate APEC-induced lung inflammation in chickens. RNAseq was used to identify the miRNAs and mRNAs expression profile between the APEC infection group (APEC) vs. the Control group (Control). The results show that APEC can induce lung lesions in chickens and increase the expression levels of inflammatory cytokines (IL1β, IL8, IL6, and TNFα). High-quality sequencing data were obtained, of which more than 93% of the reads can be mapped to the chicken genome. A total of 22 differentially expressed (DE) miRNAs and 608 DE mRNAs were detected in the APEC vs. the Control. Remarkably, 23 regulatory pairs of miRNA-mRNA interactions were identified in chicken lungs upon APEC infection. Further validation revealed that gga-miR-214 could directly target the RAB37 gene upon APEC infection to modulate the expression of inflammatory cytokine response. This study provides new insights into the host immune response to APEC infection.
Collapse
Affiliation(s)
- Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jishuang Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Luo J, Yang Z, Li X, Xiao C, Yuan H, Yang X, Zhou B, Zheng Y, Zhang J, Yang X. High Muscle Expression of IGF2BP1 Gene Promotes Proliferation and Differentiation of Chicken Primary Myoblasts: Results of Transcriptome Analysis. Animals (Basel) 2024; 14:2024. [PMID: 39061491 PMCID: PMC11274093 DOI: 10.3390/ani14142024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Muscle development is a multifaceted process influenced by numerous genes and regulatory networks. Currently, the regulatory network of chicken muscle development remains incompletely elucidated, and its molecular genetic mechanisms require further investigation. The Longsheng-Feng chicken, one of the elite local breeds in Guangxi, serves as an excellent resource for the selection and breeding of high-quality broiler chickens. In this study, we conducted transcriptome sequencing of the pectoral muscles of Longsheng-Feng chickens and AA broiler chickens with different growth rates. Through comprehensive bioinformatics analysis, we identified differentially expressed genes that affect muscle growth and showed that IGF2BP1 is a key participant in chicken muscle development. Subsequently, we employed QRT-PCR, EdU staining, and flow cytometry to further investigate the role of IGF2BP1 in the proliferation and differentiation of chicken myogenic cells. We identified 1143 differentially expressed genes, among which IGF2BP1 is intimately related to the muscle development process and is highly expressed in muscle tissues. Overexpression of IGF2BP1 significantly promotes the proliferation and differentiation of chicken primary myoblasts, while knockdown of IGF2BP1 significantly inhibits these processes. In summary, these results provide valuable preliminary insights into the regulatory roles of IGF2BP1 in chicken growth and development.
Collapse
Affiliation(s)
- Jintang Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xianchao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Hong Yuan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xueqin Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Biyan Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Yan Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Jiayi Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
3
|
Li H, Sun H, Yang Y, Ma Y, Li N, Tan J, Sun C. Integrated analysis of mRNA and microRNA expression pattern reveals differential transcriptome signatures in RIPK2 over-expressing chicken macrophages infected with avian pathogenic E. coli. Br Poult Sci 2023:1-13. [PMID: 36607339 DOI: 10.1080/00071668.2022.2163153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. As RIPK2 (receptor interacting serine/threonine kinase 2) has been shown to to alleviate excessive inflammatory responses, the following study conducted a systematic and in-depth analysis of the mRNA-seq and miRNA-seq data from chicken macrophages with/without over-expression of RIPK2 (oeRIPK2) combined with/without avian pathogenic E. coli (APEC) infection to identify the miRNA-mRNA interaction network and potential signalling pathways involved.2. A total of 9,201 differentially expressed (DE) mRNAs and 300 DE miRNA were identified in both oeRIPK2+APEC vs. APEC and oeRIPK2 vs. the wild-type (WT). Moreover, 4,269 instances of co-expression between miRNAs and mRNAs were seen involving 1,652 DE mRNAs and 164 DE miRNAs.3. Functional analysis of the DE mRNAs in the miRNA-mRNA interaction network showed that 223 biological processes and five KEGG pathways were significantly enriched in the two comparisons. In total, 128 pairs of miRNA-mRNA interactions were involved in the identified MAPK signalling pathway and focal adhesion immune related pathways.4. Significantly, these screened miRNAs (gga-miR-222b-5p and gga-miR-214) and their target genes were highly correlated with APEC infection and RIPK2. These recognised key genes, miRNA and the overall miRNA-mRNA regulatory network, enables better understanding of the molecular mechanism of host response to APEC infection, especially related to RIPK2.
Collapse
Affiliation(s)
- H Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou, China
| | - H Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Y Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Y Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - N Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - J Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - C Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou, China
| |
Collapse
|
4
|
Yang Y, Lu Y, Zhou Y, Sun H, Ma Y, Tan J, Li N, Li H. Identification and characterization of microRNAs, especially gga-miR-181b-5p, in chicken macrophages associated with avian pathogenic E. coli infection. Avian Pathol 2023; 52:185-198. [PMID: 36803112 DOI: 10.1080/03079457.2023.2181146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
AbstractAvian pathogenic E. coli (APEC) is a common pathogen in the poultry industry, which can cause substantial economic losses. Recently, emerging evidence showed that the miRNAs were involved in various viral and bacterial infection. To elucidate the role of miRNAs in chicken macrophages in response to APEC infection, we attempted to investigate the miRNAs expression pattern upon APEC infection via miRNA-seq, and to identify the molecular mechanism of the important miRNAs by using RT-qPCR, Western blotting, dual-luciferase reporter assay, and CCK-8. Results showed that a total of 80 differentially expressed (DE) miRNAs were identified in the comparison of APEC vs. wild type group, which corresponded to 724 target genes. Moreover, the target genes of the identified DE miRNAs were mainly significantly enriched in MAPK signaling pathway, Autophagy-animal, mTOR signaling pathway, ErbB signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway. Remarkably, gga-miR-181b-5p is capable to participate in host immune and inflammatory response against APEC infection via targeting of TGFBR1 to modulate the activation of TGF-beta signaling pathway. Collectively, this study provides a perspective of miRNA expression pattern in chicken macrophages upon APEC infection. These findings provide the insight into miRNAs against APEC infection and gga-miR-181b-5p might be a potential target for treating APEC infection.
Collapse
Affiliation(s)
- Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuyang Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jishuang Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naying Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China.,Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou 225009, China
| |
Collapse
|
5
|
Alber A, Stevens MP, Vervelde L. The bird's immune response to avian pathogenic Escherichia coli. Avian Pathol 2021; 50:382-391. [PMID: 33410704 DOI: 10.1080/03079457.2021.1873246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) cause colibacillosis in birds, a syndrome of severe respiratory and systemic disease that constitutes a major threat due to early mortality, condemnation of carcasses and reduced productivity. APEC can infect different types of birds in all commercial settings, and birds of all ages, although disease tends to be more severe in younger birds likely a consequence of an immature immune system. APEC can act as both primary and secondary pathogens, with predisposing factors for secondary infections including poor housing conditions, respiratory viral and Mycoplasma spp. infections or vaccinations. Controlled studies with APEC as primary pathogens have been used to study the bird's immune response to APEC, although it may not always be representative of natural infections which may be more complex due to the presence of secondary agents, stress and environmental factors. Under controlled experimental conditions, a strong early innate immune response is induced which includes host defence peptides in mucus and a cellular response driven by heterophils and macrophages. Both antibody and T-cell mediated adaptive responses have been demonstrated after vaccination. In this review we will discuss the bird's immune response to APEC as primary pathogen with a bias towards the innate immune response, as mechanistic adaptive studies clearly form a much more limited body of work despite numerous vaccine trials.
Collapse
Affiliation(s)
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Xiao C, Deng J, Zeng L, Sun T, Yang Z, Yang X. Transcriptome Analysis Identifies Candidate Genes and Signaling Pathways Associated With Feed Efficiency in Xiayan Chicken. Front Genet 2021; 12:607719. [PMID: 33815460 PMCID: PMC8010316 DOI: 10.3389/fgene.2021.607719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Feed efficiency is an important economic factor in poultry production, and the rate of feed efficiency is generally evaluated using residual feed intake (RFI). The molecular regulatory mechanisms of RFI remain unknown. Therefore, the objective of this study was to identify candidate genes and signaling pathways related to RFI using RNA-sequencing for low RFI (LRFI) and high RFI (HRFI) in the Xiayan chicken, a native chicken of the Guangxi province. Chickens were divided into four groups based on FE and sex: LRFI and HRFI for males and females, respectively. We identified a total of 1,015 and 742 differentially expressed genes associated with RFI in males and females, respectively. The 32 and 7 Gene Ontology (GO) enrichment terms, respectively, identified in males and females chiefly involved carbohydrate, amino acid, and energy metabolism. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 11 and 5 significantly enriched signaling pathways, including those for nutrient metabolism, insulin signaling, and MAPK signaling, respectively. Protein-protein interaction (PPI) network analysis showed that the pathways involving CAT, ACSL1, ECI2, ABCD2, ACOX1, PCK1, HSPA2, and HSP90AA1 may have an effect on feed efficiency, and these genes are mainly involved in the biological processes of fat metabolism and heat stress. Gene set enrichment analysis indicated that the increased expression of genes in LRFI chickens was related to intestinal microvilli structure and function, and to the fat metabolism process in males. In females, the highly expressed set of genes in the LRFI group was primarily associated with nervous system and cell development. Our findings provide further insight into RFI regulation mechanisms in chickens.
Collapse
Affiliation(s)
- Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jixian Deng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Linghu Zeng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tiantian Sun
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Monson MS, Lamont SJ. Genetic resistance to avian pathogenic Escherichia coli (APEC): current status and opportunities. Avian Pathol 2021; 50:392-401. [PMID: 33554653 DOI: 10.1080/03079457.2021.1879990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Infections with avian pathogenic Escherichia coli (APEC) can be extremely detrimental to poultry health and production. Investigating host genetic variation could identify the biological mechanisms that control resistance to this pathogen and allow selection for improved resistance in experimental and commercial poultry populations. In this review, the current knowledge of how host genetics contributes to APEC resistance and future opportunities that would benefit the understanding or application of genetic resistance are discussed. Phenotypes, such as antibody responses, lesion scores, and mortality, revealed that genetic background impacts APEC resistance and interacts with other factors including the environment and challenge conditions. Experiments have used divergent selection for APEC-specific antibody levels to facilitate genetic studies, estimated heritabilities in relevant traits, detected quantitative trait loci using microsatellites, and made associations with sequence variation in the major histocompatibility complex, which collectively suggest that improving APEC resistance through selection is feasible, although genetic control is partial, complex, and highly polygenic. Additionally, functional genomics techniques have identified antimicrobial responses, toll-like receptor and cytokine signalling, and the cell cycle as central pathways in the host response to APEC challenge. Opportunities for future research are discussed, including the expansion of existing lines of research and the application of new technologies that are relevant to the study of host genetics and APEC. This review closes with prospective strategies for improvement of host genetic resistance to APEC.
Collapse
Affiliation(s)
- Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
8
|
Hashemi S, Hosseini SM, Ghalyanchilangeroudi A, Sheikhi N. Transcriptome based analysis of apoptosis genes in chickens co-infected with avian infectious bronchitis virus and pathogenic Escherichia coli. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:17-22. [PMID: 33889358 PMCID: PMC8043830 DOI: 10.18502/ijm.v13i1.5487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Infection with Infectious bronchitis virus (IBV) and avian pathogenic Escherichia coli (APEC) is an important respiratory infection worldwide. Apoptosis is a physiological process of cell death that occurs as part of normal development and responds to a variety of physiological and pathophysiological stimuli. The identification of molecular mechanisms of action or inaction of key apoptotic proteins is important. This study aimed to investigate apoptotic related genes in the trachea tissue of infected (IBV variant 2, and APEC serotype O78: K80) SPF chickens group compared to the control group. MATERIALS AND METHODS Forty SPF chickens was divided into 2 groups. Differential transcriptional profile in the infected SPF chickens trachea tissue was compared to those of control group in the early stage of infection by Illumina RNA-seq technique paired-end and strand-specific sequencing. Differentially expressed genes (DEGs) of transcriptome profiling of the trachea from the infected group were identified. Gene ontology category, KEGG pathway, and STRING analysis were analyzed to identify relationships among differentially expressed genes. RESULTS Twenty-eight apoptotic genes were identified. They consisted of six pathways related to cell death: the extrinsic pathway, intrinsic pathway, endoplasmic reticulum stress pathway, MAPK signaling pathway, and cell death by NFkB and activates mTOR pathway and some regulator and apoptosis inhibitors. CONCLUSION All of the apoptotic genes in our study were up-regulated. Among these genes, the more fold change value was for TRADD and BCL2A1 genes, and the less fold change value was for MAP3K14, NFKB1, PIK3CB, and ITPR2 genes.
Collapse
Affiliation(s)
- Shabnam Hashemi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nariman Sheikhi
- Department of Clinical Sciences, College of Veterinary, Tehran Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|