1
|
de Lima BLDAM, Santiago JB, Avelino MEL, Vila-Nova TEL, Costa RTF, Moraes SLD. Natural products for denture base disinfection: A scoping review. Gerodontology 2025; 42:12-26. [PMID: 39503240 DOI: 10.1111/ger.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE This study aims to map the existing literature on natural products used as disinfection substances for conventional polymethyl methacrylate (PMMA) and computer-aided design and manufacturing (CAD-CAM) dentures. BACKGROUND Denture wearers are at high risk for denture stomatitis. Natural products have attracted the interest of the scientific community as an alternative to synthetic ones. MATERIALS AND METHODS The guiding question "Which natural products have been applied to disinfect complete dentures in conventional PMMA or CAD-CAM PMMA resin?" Searches were conducted in the PubMed/MEDLINE, Embase, Web of Science, and Cochrane databases, and manual searches were performed in reference journals in the area with studies published until December 2023, without language or date restrictions. RESULTS A total of 4272 articles were identified, and 46 studies were included after applying the eligibility criteria. Thirty-nine natural products were evaluated. Of the included studies, 43 presented positive findings and three obtained negative findings on the effectiveness of natural products in inhibiting or killing Candida albicans. CONCLUSION Natural products, predominantly sourced from the Plantae kingdom, have demonstrated efficacy in reducing Candida albicans on the surface of conventional PMMA. However, the evidence primarily stems from in vitro studies, underscoring the necessity for additional clinical research to validate their applicability under real microbiological conditions in prosthesis users.
Collapse
Affiliation(s)
| | - Jeferson Batista Santiago
- Department of Oral Rehabilitation, University of Pernambuco (UPE) Faculty of Dentistry, Recife, Brazil
| | | | | | | | | |
Collapse
|
2
|
Hariharan A, Krishnamurthi S, Thamarai C, Thanya K, Parameswari D, Krithika A. Sapindus Mukurossi - An Effective Biocleanser for Removable Dental Prostheses? An In vitro Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1154-S1160. [PMID: 38882752 PMCID: PMC11174200 DOI: 10.4103/jpbs.jpbs_1189_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 06/18/2024] Open
Abstract
This study aims to determine the efficient concentration of Sapindus mukorossi that can be used as a denture cleanser. 60 heat cure denture base resin specimens of dimensions 10*10*2 mm were fabricated. Among these, 30 were fabricated by compression moulding technique and the remaining 30 by an injection moulding technique. The samples inoculated with Candida albicans and Streptococcus mutans were subjected to denture cleansing protocols using a medicinal herbal extract from the Sapindus mukorossi, at various concentrations [15%, 20%, and 25%]. The colony-forming unit [CFU] values were evaluated using a microprocessor colony counter. The statistical analysis was performed. The intragroup comparison showed a statistically significant difference between all groups except the compression moulded samples inoculated with Streptococcus mutans. The intergroup comparison revealed no statistically significant differences between the compared groups. The reduction in CFU values is evident in the effective anti-microbial activity of Sapindus mukorossi. A concentration of 25% Sapindus mukorossi solution showed the greatest efficiency. The maximum anti-microbial activity was observed against Candida albicans in a 25% concentration of Sapindus mukorossi. Among all, injection moulded samples showed better results.
Collapse
Affiliation(s)
- Annapoorni Hariharan
- Department of Prosthodontics and Crown and Bridge, Meenakshi Ammal Dental College and Hospital, Maduravoyal, Chennai, Tamil Nadu, India
| | - Sowmya Krishnamurthi
- Department of Prosthodontics and Crown and Bridge, Meenakshi Ammal Dental College and Hospital, Maduravoyal, Chennai, Tamil Nadu, India
| | - C Thamarai
- Department of Prosthodontics and Crown and Bridge, Meenakshi Ammal Dental College and Hospital, Maduravoyal, Chennai, Tamil Nadu, India
| | - K Thanya
- Department of Prosthodontics and Crown and Bridge, Meenakshi Ammal Dental College and Hospital, Maduravoyal, Chennai, Tamil Nadu, India
| | - Devi Parameswari
- Department of Prosthodontics and Crown and Bridge, Meenakshi Ammal Dental College and Hospital, Maduravoyal, Chennai, Tamil Nadu, India
| | - A Krithika
- Department of Prosthodontics and Crown and Bridge, Meenakshi Ammal Dental College and Hospital, Maduravoyal, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Le Bars P, Kouadio AA, Amouriq Y, Bodic F, Blery P, Bandiaky ON. Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers (Basel) 2023; 16:40. [PMID: 38201705 PMCID: PMC10780608 DOI: 10.3390/polym16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
This review focuses on the current disparities and gaps in research on the characteristics of the oral ecosystem of denture wearers, making a unique contribution to the literature on this topic. We aimed to synthesize the literature on the state of current knowledge concerning the biological behavior of the different polymers used in prosthetics. Whichever polymer is used in the composition of the prosthetic base (poly methyl methacrylate acrylic (PMMA), polyamide (PA), or polyether ether ketone (PEEK)), the simple presence of a removable prosthesis in the oral cavity can disturb the balance of the oral microbiota. This phenomenon is aggravated by poor oral hygiene, resulting in an increased microbial load coupled with the reduced salivation that is associated with older patients. In 15-70% of patients, this imbalance leads to the appearance of inflammation under the prosthesis (denture stomatitis, DS). DS is dependent on the equilibrium-as well as on the reciprocal, fragile, and constantly dynamic conditions-between the host and the microbiome in the oral cavity. Several local and general parameters contribute to this balance. Locally, the formation of microbial plaque on dentures (DMP) depends on the phenomena of adhesion, aggregation, and accumulation of microorganisms. To limit DMP, apart from oral and lifestyle hygiene, the prosthesis must be polished and regularly immersed in a disinfectant bath. It can also be covered with an insulating coating. In the long term, relining and maintenance of the prosthesis must also be established to control microbial proliferation. On the other hand, several general conditions specific to the host (aging; heredity; allergies; diseases such as diabetes mellitus or cardiovascular, respiratory, or digestive diseases; and immunodeficiencies) can make the management of DS difficult. Thus, the second part of this review addresses the complexity of the management of DMP depending on the polymer used. The methodology followed in this review comprised the formulation of a search strategy, definition of the inclusion and exclusion criteria, and selection of studies for analysis. The PubMed database was searched independently for pertinent studies. A total of 213 titles were retrieved from the electronic databases, and after applying the exclusion criteria, we selected 84 articles on the possible microbial interactions between the prosthesis and the oral environment, with a particular emphasis on Candida albicans.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Yves Amouriq
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - François Bodic
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Pauline Blery
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Octave Nadile Bandiaky
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| |
Collapse
|
4
|
Inhibitory effect of 405-nm blue LED light on the growth of Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med Sci 2022; 37:2311-2319. [PMID: 35034224 DOI: 10.1007/s10103-022-03507-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
We investigated whether irradiation with 405-nm blue LED light could inhibit the growth of not only single- but dual-species biofilms formed by Candida albicans and Streptococcus mutans on denture base resin and cause the alteration in gene expression related to adhesion and biofilm formation. C. albicans and S. mutans single-/dual-species biofilms were formed on the denture base specimens. The biofilms were irradiated with 405-nm blue LED light (power density output: 280 mW/cm2) for 0 (control) and 40 min. Dual-species biofilms were analyzed using CFU assay and fluorescence microscopy, and single-/dual-species biofilms were analyzed using alamarBlue assays and gene expression analysis. To assess the inhibitory effect of irradiation on dual-species biofilms, specimens after irradiation were aerobically incubated for 12 h. After incubation, the inhibition of growth was assessed using CFU assays and fluorescence microscopy. Data were analyzed using the Mann-Whitney U or Student's t test (p < 0.05). Irradiation produced a significant inhibitory effect on biofilms. Fluorescence microscopy revealed that almost all C. albicans and S. mutans cells were killed by irradiation, and there was no notable difference in biofilm thickness immediately after irradiation and after irradiation and incubation for 12 h. alamarBlue assays indicated the growth of the biofilms was inhibited for 12-13 h. The expression of genes associated with adhesion and biofilm formation-als1 in C. albicans and ftf, gtfC, and gtfB in S. mutans-significantly reduced by irradiation. Irradiation with 405-nm blue LED light effectively inhibited the growth of C. albicans and S. mutans dual-species biofilms for 12 h.
Collapse
|
5
|
Shichiri-Negoro Y, Tsutsumi-Arai C, Arai Y, Satomura K, Arakawa S, Wakabayashi N. Ozone ultrafine bubble water inhibits the early formation of Candida albicans biofilms. PLoS One 2021; 16:e0261180. [PMID: 34890423 PMCID: PMC8664219 DOI: 10.1371/journal.pone.0261180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the effect of ozone ultrafine bubble water (OUFBW) on the formation and growth of Candida albicans (C. albicans) biofilms and surface properties of denture base resins. OUFBWs were prepared under concentrations of 6 (OUFBW6), 9 (OUFBW9), and 11 ppm (OUFBW11). Phosphate buffered saline and ozone-free electrolyte aqueous solutions (OFEAS) were used as controls. Acrylic resin discs were made according to manufacturer instructions, and C. albicans was initially cultured on the discs for 1.5 h. A colony forming unit (CFU) assay was performed by soaking the discs in OUFBW for 5 min after forming a 24-h C. albicans biofilm. The discs after initial attachment for 1.5 h were immersed in OUFBW and then cultured for 0, 3, and 5 h. CFUs were subsequently evaluated at each time point. Moreover, a viability assay, scanning electron microscopy (SEM), Alamar Blue assay, and quantitative real-time polymerase chain reaction (qRT-PCR) test were performed. To investigate the long-term effects of OUFBW on acrylic resin surface properties, Vickers hardness (VH) and surface roughness (Ra) were measured. We found that OUFBW9 and OUFBW11 significantly degraded the formed 24-h biofilm. The time point CFU assay showed that C. albicans biofilm formation was significantly inhibited due to OUFBW11 exposure. Interestingly, fluorescence microscopy revealed that almost living cells were observed in all groups. In SEM images, the OUFBW group had lesser number of fungi and the amount of non-three-dimensional biofilm than the control group. In the Alamar Blue assay, OUFBW11 was found to suppress Candida metabolic function. The qRT-PCR test showed that OUFBW down-regulated ALS1 and ALS3 expression regarding cell-cell, cell-material adhesion, and biofilm formation. Additionally, VH and Ra were not significantly different between the two groups. Overall, our data suggest that OUFBW suppressed C. albicans growth and biofilm formation on polymethyl methacrylate without impairing surface properties.
Collapse
Affiliation(s)
- Yuka Shichiri-Negoro
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chiaki Tsutsumi-Arai
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, Japan
| | - Yuki Arai
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, Japan
| | - Shinichi Arakawa
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriyuki Wakabayashi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
6
|
Tsutsumi-Arai C, Arai Y, Terada-Ito C, Imamura T, Tatehara S, Ide S, Wakabayashi N, Satomura K. Microbicidal effect of 405-nm blue LED light on Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med Sci 2021; 37:857-866. [PMID: 33931832 DOI: 10.1007/s10103-021-03323-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/20/2021] [Indexed: 12/01/2022]
Abstract
This study investigated: (1) the microbicidal effect of 405-nm blue LED light irradiation on biofilm formed by Candida albicans hyphae and Streptococcus mutans under dual-species condition on denture base resin, (2) the generation of intracellular reactive oxygen species (ROS) induced by irradiation, and (3) the existence of intracellular porphyrins, which act as a photosensitizer. Denture base resin specimens were prepared and C. albicans and S. mutans dual-species biofilms were allowed to form on the specimens. The biofilms were irradiated with 405-nm blue LED light and analyzed using the colony-forming unit assay, fluorescence microscopy, and scanning electron microscopy (SEM). Single-species biofilms of C. albicans and S. mutans formed on the specimens were irradiated with 405-nm blue LED light. After the irradiation, the intracellular ROS levels in C. albicans and S. mutans cells were measured. In addition, the level of intracellular porphyrins in C. albicans and S. mutans were measured. Irradiation for more than 30 min significantly inhibited the colony formation ability of C. albicans and S. mutans. Fluorescence microscopy revealed that almost all C. albicans and S. mutans cells were killed by irradiation. SEM images showed various cell damage patterns. Irradiation led to the generation of intracellular ROS and porphyrins were present in both C. albicans and S. mutans cells. In conclusion, irradiation with 405-nm blue light-emitting diode light for 40 min effectively disinfect C. albicans hyphae and S. mutans dual-species biofilms and possibly react with intracellular porphyrins resulting in generation of ROS in each microorganism.
Collapse
Affiliation(s)
- Chiaki Tsutsumi-Arai
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan.
| | - Yuki Arai
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Chika Terada-Ito
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Takahiro Imamura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Seiko Tatehara
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Shinji Ide
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Noriyuki Wakabayashi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| |
Collapse
|
7
|
Zhang QJ, Liu Y, Zhang WT, Huang JJ, Li HH, Lu YG, Zheng M, Zheng DL. Synthesis, Antifungal Activity, and Cytotoxicity of AgBr-NP@CTMAB Hybrid and Its Application in PMMA. Int J Nanomedicine 2021; 16:3091-3103. [PMID: 33953557 PMCID: PMC8092853 DOI: 10.2147/ijn.s290673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Objective To synthesize and determine the antifungal activity of AgBr-nanoparticles (NP) @CTMAB (cetyltrimethyl-ammonium bromide) against Candida albicans (C. albicans) for use in the field of denture cleaning. Methods The morphology and structure of AgBr-NP@CTMAB were characterized by IR, UV-Vis, XRD and SEM. The antifungal potential of AgBr-NP@CTMAB against C. albicans was determined by colony formation assay and growth curve analysis. PMMA containing AgBr-NP@CTMAB was prepared, and the long-term antifungal efficacy was analyzed. The effect against C. albicans biofilm was analyzed by SEM and OD600 , and the color changes of the specimens were observed by stereomicroscopy after 1 week of incubation. Cytotoxicity to human oral gingival fibroblasts and oral mucosal epithelial cells was detected by Cell Counting Kit-8 (CCK-8) in vitro. Results The compound showed a good crystalline phase, the presence of AgBr nanoparticles and the hybridization of CTMAB+ with AgBr-NPs. AgBr-NP@CTMAB showed significant antifungal activity against C. albicans at concentrations of 10 μg/mL and 20 μg/mL. PMMA specimens containing AgBr-NP@CTMAB showed no long-term antifungal effect against C. albicans biofilm. The clearance rate of C. albicans attached to PMMA was 44.73% after soaking in 10 µg/mL AgBr-NP@CTMAB solution for 30 min and 91.35% for 8 h. There was no significant residual cytotoxicity or visual color change after soaking. Significance AgBr-NP@CTMAB showed promising potential treatment for denture cleaners.
Collapse
Affiliation(s)
- Qiao-Jun Zhang
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China.,Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yue Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China
| | - Wen-Ting Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China
| | - Jing-Jing Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Ming Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| |
Collapse
|
8
|
Dentino AR, Lee D, Dentino K, Guentsch A, Tahriri M. Inhibition of Candida albicans and Mixed Salivary Bacterial Biofilms on Antimicrobial Loaded Phosphated Poly(methyl methacrylate). Antibiotics (Basel) 2021; 10:antibiotics10040427. [PMID: 33924304 PMCID: PMC8070037 DOI: 10.3390/antibiotics10040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Biofilms play a crucial role in the development of Candida-associated denture stomatitis. Inhibition of microbial adhesion to poly(methyl methacrylate) (PMMA) and phosphate containing PMMA has been examined in this work. C. albicans and mixed salivary microbial biofilms were compared on naked and salivary pre-conditioned PMMA surfaces in the presence or absence of antimicrobials (Cetylpyridinium chloride [CPC], KSL-W, Histatin 5 [His 5]). Polymers with varying amounts of phosphate (0–25%) were tested using four C. albicans oral isolates as well as mixed salivary bacteria and 24 h biofilms were assessed for metabolic activity and confirmed using Live/Dead staining and confocal microscopy. Biofilm metabolism was reduced as phosphate density increased (15%: p = 0.004; 25%: p = 0.001). Loading of CPC on 15% phosphated disks showed a substantial decrease (p = 0.001) in biofilm metabolism in the presence or absence of a salivary pellicle. Salivary pellicle on uncharged PMMA enhanced the antimicrobial activity of CPC only. CPC also demonstrated remarkable antimicrobial activity on mixed salivary bacterial biofilms under different conditions displaying the potent efficacy of CPC (350 µg/mL) when combined with an artificial protein pellicle (Biotene half strength).
Collapse
Affiliation(s)
- Andrew R. Dentino
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
- Correspondence:
| | - DongHwa Lee
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | - Kelley Dentino
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | - Arndt Guentsch
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | | |
Collapse
|
9
|
Zayed A, Badawy MT, Farag MA. Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chem 2021; 355:129609. [PMID: 33799261 DOI: 10.1016/j.foodchem.2021.129609] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Valorization of food byproducts has attracted recently considerable attention. Citrus fruits provide considerable non-edible residues reach 80% in juice production. They are considered agri-wastes to comprise peel, pulp and seeds. Previous investigations have focused on peel and pulp to recover value-added products. The review presents for the first-time phytochemical composition of Citrus seeds' products, i.e., oil and extracts. Fatty acids, phytosterols and tocopherols amounted as the major bioactives in Citrus seeds, in addition to limonoids, dietary fibers and flavonoids. Besides their nutritional values, these chemicals have promising applications including production of biodiesel, food enhancers and antioxidants, especially from mandarin and grapefruit seeds. Optimum conditions of the different Citrus seeds' valorization are discussed to improve extraction yield and lessen environmental hazards of solvent extraction. This review presents the best utilization practices for one of the largest cultivated fruit seeds worldwide and its different applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, El-guish Street, 31527 Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Marwa T Badawy
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
10
|
Effect of yeasts on food quality and safety and possibilities of their inhibition. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|