1
|
Lei W, Hu J, Zhai J, Gong J, Tian F, Chang S, Zou X, Ju F, Qian S. Study of heat transfer and flow within atherosclerotic plaques in a focused ultrasound field. ULTRASONICS 2025; 154:107699. [PMID: 40393268 DOI: 10.1016/j.ultras.2025.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Focused ultrasound has been widely used for the thermotherapy of soft tissue lesions. In this process, non-Fourier heat conduction and porous medium theory has to be considered because of non-homogeneous media. The study estimates the effects of the temperature lag and porous medium on the plaque ablation and drug treatment by focused ultrasound (FU). This study integrated TWMBT with the porous media heat transfer equation to characterize the internal temperature distribution within atherosclerotic plaque (AP) during FU application. The coupling equations are solved with finite element method. This paper focuses on the effects of porosity, permeability, and attenuation coefficient on the temperature and flow rate within the AP. The results consider artery wall thickness on heating of AP by FU. In addition, this study qualitatively analyzed the differences among the Pennes, TWMBT, and porous media heat conduction equations. The results show that the temperature responses of biological tissues exhibits lagging behaviors, which are inherently related to the physical time scale. Because of the disparities in the physical characteristics of the target and surrounding tissues, fluid flow within AP can have an impact on the distribution of tissue temperature, the direction of flow between solid tissues is determined by the permeability coefficient and ultrasonic intensity. The permeability coefficient, frequency and attenuation coefficient have a significant effect on the fluid flow within AP. Both heat dissipation and heat convergence are characteristics of fluid flow within the tissue, the focal location and the physical property parameters may affect the fluid heat dissipation and heat collection properties within the tissue. Furthermore, the temperature peak may not occur at the focus. The model can provide an analytical template for different types of precise thermal ablation AP, including radiofrequencyablation, microwave therapy, and laserablation besides FU ablation, and can also provide a case for adjunctive drug transport.
Collapse
Affiliation(s)
- Weirui Lei
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang 421001, China
| | - Jintao Zhai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China
| | - Jinru Gong
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Feng Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Shuai Chang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Fangfang Ju
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Shengyou Qian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Kayani Z, Heli H, Dehdari Vais R, Haghighi H, Ajdari M, Sattarahmady N. Synchronized Chemotherapy/Photothermal Therapy/Sonodynamic Therapy of Human Triple-Negative and Estrogen Receptor-Positive Breast Cancer Cells Using a Doxorubicin-Gold Nanoclusters-Albumin Nanobioconjugate. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:869-881. [PMID: 38538442 DOI: 10.1016/j.ultrasmedbio.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Novel strategies for treating triple-negative breast cancer (TNBC) are ongoing because of the lack of standard-of-care treatment. Nanoframed materials with a protein pillar are considered a valuable tool for designing multigoals of energy-absorbing/medication cargo and are a bridge to cross-conventional treatment strategies. METHODS Nanobioconjugates of gold nanoclusters-bovine serum albumin (AuNCs-BSA) and doxorubicin-AuNCs-BSA (Dox-AuNCs-BSA) were prepared and employed as a simultaneous double photosensitizer/sonosensitizer and triple chemotherapeutic/photosensitizer/sonosensitizer, respectively. RESULTS The highly stable AuNCs-BSA and Dox-AuNCs-BSA have ζ potentials of -29 and -18 mV, respectively, and represent valuable photothermal and sonodynamic activities for the combination of photothermal therapy and sonodynamic therapy (PTT/SDT) and synchronized chemotherapy/photothermal therapy/sonodynamic therapy (CTX/PTT/SDT) of human TNBC cells, respectively. The efficiency of photothermal conversion of AuNCs-BSA was calculated to be a promising value of 32.9%. AuNCs-BSA and Dox-AuNCs-BSA were activated on either laser light irradiation or ultrasound exposure with the highest efficiency on the combination of both types of radiation. CTX/PTT/SDT of MCF-7 and MDA-MB-231 breast cancer cell lines by Dox-AuNCs-BSA were evaluated with the MTT cell proliferation assay and found to progress synergistically. CONCLUSION Results of the MTT assay, detection of the generation of intracellular reactive oxygen species and occurrence of apoptosis in the cells confirmed that CTX/PTT/SDT by Dox-AuNCs-BSA was attained with lower needed doses of the drug and improved tumor cell ablation, which would result in the enhancement of therapeutic efficacy and overcoming of therapeutic resistance.
Collapse
Affiliation(s)
- Zahra Kayani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Haghighi
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Ajdari
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
4
|
Zhang Y, Yang Y, Feng Y, Gao X, Pei L, Li X, Gao B, Liu L, Wang C, Gao S. Sonodynamic therapy for the treatment of atherosclerosis. J Pharm Anal 2024; 14:100909. [PMID: 38799235 PMCID: PMC11127226 DOI: 10.1016/j.jpha.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 05/29/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease, stroke, and peripheral vascular disease. Despite the current treatments, mortality and disability still remain high. Sonodynamic therapy (SDT), a non-invasive and localized methodology, has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques. Promising progress has been made through cell and animal assays, as well as clinical trials. For example, the effect of SDT on apoptosis and autophagy of cells in AS, especially macrophages, and the concept of non-lethal SDT has also been proposed. In this review, we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS; we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages, T lymphocytes, neovascularization, smooth muscle cells, lipid, extracellular matrix and efferocytosis within plaques; additionally, we discuss the safety of SDT. A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.
Collapse
Affiliation(s)
- Yan Zhang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Yang
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yudi Feng
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyan Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liping Pei
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaopan Li
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bingxin Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Liu
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chengzeng Wang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuochen Gao
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Yamaguchi A, Maeshige N, Noguchi H, Yan J, Ma X, Uemura M, Su D, Kondo H, Sarosiek K, Fujino H. Pulsed ultrasound promotes secretion of anti-inflammatory extracellular vesicles from skeletal myotubes via elevation of intracellular calcium level. eLife 2023; 12:RP89512. [PMID: 38054662 PMCID: PMC10699803 DOI: 10.7554/elife.89512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
The regulation of inflammatory responses is an important intervention in biological function and macrophages play an essential role during inflammation. Skeletal muscle is the largest organ in the human body and releases various factors which mediate anti-inflammatory/immune modulatory effects. Recently, the roles of extracellular vesicles (EVs) from a large variety of cells are reported. In particular, EVs released from skeletal muscle are attracting attention due to their therapeutic effects on dysfunctional organs and tissues. Also, ultrasound (US) promotes release of EVs from skeletal muscle. In this study, we investigated the output parameters and mechanisms of US-induced EV release enhancement and the potential of US-treated skeletal muscle-derived EVs in the regulation of inflammatory responses in macrophages. High-intensity US (3.0 W/cm2) irradiation increased EV secretion from C2C12 murine muscle cells via elevating intracellular Ca2+ level without negative effects. Moreover, US-induced EVs suppressed expression levels of pro-inflammatory factors in macrophages. miRNA sequencing analysis revealed that miR-206-3p and miR-378a-3p were especially abundant in skeletal myotube-derived EVs. In this study we demonstrated that high-intensity US promotes the release of anti-inflammatory EVs from skeletal myotubes and exert anti-inflammatory effects on macrophages.
Collapse
Affiliation(s)
- Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hikari Noguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Jiawei Yan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Hiroyo Kondo
- Department of Health and Nutrition , Shubun University, Ichinomiya, Japan
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard University T.H. Chan School of Public Health, Boston, United States
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
6
|
Wu G, Yu G, Zheng M, Peng W, Li L. Recent Advances for Dynamic-Based Therapy of Atherosclerosis. Int J Nanomedicine 2023; 18:3851-3878. [PMID: 37469455 PMCID: PMC10352141 DOI: 10.2147/ijn.s402678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/06/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which may lead to high morbidity and mortality. Currently, the clinical treatment strategy for AS is administering drugs and performing surgery. However, advanced therapy strategies are urgently required because of the deficient therapeutic effects of current managements. Increased number of energy conversion-based organic or inorganic materials has been used in cancer and other major disease treatments, bringing hope to patients with the development of nanomedicine and materials. These treatment strategies employ specific nanomaterials with specific own physiochemical properties (external stimuli: light or ultrasound) to promote foam cell apoptosis and cholesterol efflux. Based on the pathological characteristics of vulnerable plaques, energy conversion-based nano-therapy has attracted increasing attention in the field of anti-atherosclerosis. Therefore, this review focuses on recent advances in energy conversion-based treatments. In addition to summarizing the therapeutic effects of various techniques, the regulated pathological processes are highlighted. Finally, the challenges and prospects for further development of dynamic treatment for AS are discussed.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Guanye Yu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Meiling Zheng
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 101121, People’s Republic of China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Lei Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
7
|
Stevens TW, Khalaf FK, Soehnlen S, Hegde P, Storm K, Meenakshisundaram C, Dworkin LD, Malhotra D, Haller ST, Kennedy DJ, Dube P. Dirty Jobs: Macrophages at the Heart of Cardiovascular Disease. Biomedicines 2022; 10:1579. [PMID: 35884884 PMCID: PMC9312498 DOI: 10.3390/biomedicines10071579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the greatest public health concerns and is the leading cause of morbidity and mortality in the United States and worldwide. CVD is a broad yet complex term referring to numerous heart and vascular conditions, all with varying pathologies. Macrophages are one of the key factors in the development of these conditions. Macrophages play diverse roles in the maintenance of cardiovascular homeostasis, and an imbalance of these mechanisms contributes to the development of CVD. In the current review, we provide an in-depth analysis of the diversity of macrophages, their roles in maintaining tissue homeostasis within the heart and vasculature, and the mechanisms through which imbalances in homeostasis may lead to CVD. Through this review, we aim to highlight the potential importance of macrophages in the identification of preventative, diagnostic, and therapeutic strategies for patients with CVD.
Collapse
Affiliation(s)
- Travis W. Stevens
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Fatimah K. Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Sophia Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Prajwal Hegde
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Kyle Storm
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Chandramohan Meenakshisundaram
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Lance D. Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| |
Collapse
|
8
|
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda Maryland 20892 USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
9
|
Lin X, Song J, Chen X, Yang H. Ultrasound-Activated Sensitizers and Applications. Angew Chem Int Ed Engl 2020; 59:14212-14233. [PMID: 31267634 DOI: 10.1002/anie.201906823] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Modalities for photo-triggered anticancer therapy are usually limited by their low penetrative depth. Sonotheranostics especially sonodynamic therapy (SDT), which is different from photodynamic therapy (PDT) by the use of highly penetrating acoustic waves to activate a class of sound-responsive materials called sonosensitizers, has gained significant interest in recent years. The effect of SDT is closely related to the structural and physicochemical properties of the sonosensitizers, which has led to the development of new sound-activated materials as sonosensitizers for various biomedical applications. This Review provides a summary and discussion of the types of novel sonosensitizers developed in the last few years and outlines their specific designs and the potential challenges. The applications of sonosensitizers with various functions such as for imaging and drug delivery as well as in combination with other treatment modalities would provide new strategies for disease therapy.
Collapse
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
10
|
In vivo delivery of an exogenous molecule into murine T lymphocytes using a lymphatic drug delivery system combined with sonoporation. Biochem Biophys Res Commun 2020; 525:1025-1031. [PMID: 32178874 DOI: 10.1016/j.bbrc.2020.02.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Physical delivery of exogenous molecules into lymphocytes is extremely challenging because conventional methods have notable limitations. Here, we evaluated the potential use of acoustic liposomes (ALs) and sonoporation to deliver exogenous molecules into lymphocytes within a lymph node (LN). MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) mice, which show systemic LN swelling, were used as the model system. After direct injection into the subiliac LN, a solution containing both ALs and TOTO-3 fluorophores (molecular weight: 1355) was able to reach the downstream proper axillary LN (PALN) via the lymphatic vessels (LVs). This led to the accumulation of a high concentration of TOTO-3 fluorophores and ALs in the lymphatic sinuses of the PALN, where a large number of lymphocytes were densely packed. Exposure of the PALN to >1.93 W/cm2 of 970-kHz ultrasound allowed the solution to extravasate into the parenchyma and reach the large number of lymphocytes in the sinuses. Flow cytometric analysis showed that TOTO-3 molecules were delivered into 0.49 ± 0.23% of CD8+7AAD- cytotoxic T lymphocytes. Furthermore, there was no evidence of tissue damage. Thus, direct administration of drugs into LVs combined with sonoporation can improve the delivery of exogenous molecules into primary lymphocytes. This technique could become a novel approach to immunotherapy.
Collapse
|
11
|
Jiang L, Wang J, Jiang J, Zhang C, Zhao M, Chen Z, Wang N, Hu D, Liu X, Peng H, Lian M. Sonodynamic therapy in atherosclerosis by curcumin nanosuspensions: Preparation design, efficacy evaluation, and mechanisms analysis. Eur J Pharm Biopharm 2019; 146:101-110. [PMID: 31841689 DOI: 10.1016/j.ejpb.2019.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that curcumin (Cur) induced by ultrasound has protective effects on atherosclerosis even if low bioavailability of the Cur. The enhancement of bioavailability of the Cur further improved the curative effect of sonodynamic therapy (SDT) on atherosclerosis through nanotechnology. Nanosuspensions as a good drug delivery system had obvious advantages in increasing the solubility and improving the effectiveness of insoluble drugs. The aim of this study was to develop curcumin nanosuspensions (Cur-ns) which used polyvinylpyrrolidone (PVPK30) and sodium dodecyl sulfate (SDS) as stabilizers to improve poor water solubility and bioavailability of the Cur. And then the therapeutic effects of Cur-ns-SDT on atherosclerotic plaques and its possible mechanisms would be investigated and elucidated. Cur-ns with a small particle size has been successfully prepared and the data have confirmed that Cur-ns could be more easily engulfed into RAW264.7 cells than free Cur and accumulated more under the stimulation of the ultrasound. Reactive oxygen species (ROS) inside RAW264.7 cells after SDT led to the decrease of mitochondrial membrane potential (MMP) and the higher expression of cleaved caspase-9/3. The results of in vivo experiments showed that Cur-ns-SDT reduced the level of total cholesterol (TC) and low density lipoprotein (LDL) and promoted the transformation from M1 to M2 macrophages, relieved atherosclerosis syndrome. Therefore, Cur-ns-SDT was a potential treatment of anti-atherosclerosis by enhancing macrophages apoptosis through mitochondrial pathway and inhibiting the progression of plaques by interfering with macrophages polarization.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Jiahe Wang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Jiaqi Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Changmei Zhang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Na Wang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Dandan Hu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China.
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| |
Collapse
|