1
|
Malarvizhi K, Ramyadevi D, Vedha Hari BN, Sarveswari HB, Solomon AP, Fang H, Luo RH, Zheng YT. Mercuric-sulphide based metallopharmaceutical formulation as an alternative therapeutic to combat viral and multidrug-resistant (MDR) bacterial infections. Sci Rep 2023; 13:16706. [PMID: 37794044 PMCID: PMC10550948 DOI: 10.1038/s41598-023-43103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
According to the Global Antimicrobial Resistance and Use Surveillance System (GLASS) data, antibiotic resistance escalates more challenges in treatment against communicable diseases worldwide. Henceforth, the use of combinational antimicrobial therapy and metal-conjugated phytoconstituents composites are considered as alternatives. The present study explored the efficacy of mercuric-sulfide-based metallopharmaceutical, Sivanar Amirtham for anti-bacterial, anti-tuberculosis, anti-HIV therapeutics and toxicity profile by haemolytic assay, first of its kind. The anti-bacterial study was performed against both gram-positive and gram-negative pathogens including Staphylococcus aureus (ATCC 29213), Methicillin-resistant Staphylococcus aureus (MRSA: ATCC 43300), Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa (PA14) and Vibrio cholerae (MTCC 3905) by agar well diffusion assay, wherein the highest zone of inhibition was identified for MRSA (20.7 mm) and V. cholerae (34.3 mm) at 25 mg/mL. Furthermore, the anti-tuberculosis activity experimented by microtitre alamar blue assay against M. tuberculosis (ATCC 27294) demonstrated significant activity at the concentration range of 12.5-100 µg/mL. Additionally, the anti-HIV efficacy established by the syncytia inhibition method using C8166 cell lines infected with HIV-1IIIB, showed a significant therapeutic effect. The in-vitro toxicity assay proved Sivanar Amirtham to be non-haemolytic and haemocompatible. The physicochemical characterization studies revealed the nano-sized particles with different functional groups and the distinctive metal-mineral complex could be attributed to the multi-site targeting ability. The rationale evidence and scientific validation for the efficacy of Sivanar Amirtham ensures that it could be proposed as an alternative or adjuvant for both prophylactics and therapeutics to overcome HIV infection and antimicrobial resistance as well as the multi-drug resistance challenges.
Collapse
Affiliation(s)
- Kootharasan Malarvizhi
- Pharmaceutical Technology Laboratory (#214, ASK-II), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Durai Ramyadevi
- Pharmaceutical Technology Laboratory (#214, ASK-II), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India.
| | - B Narayanan Vedha Hari
- Pharmaceutical Technology Laboratory (#214, ASK-II), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India.
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - H Fang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - R H Luo
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Y T Zheng
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
2
|
Scandorieiro S, Teixeira FMMB, Nogueira MCL, Panagio LA, de Oliveira AG, Durán N, Nakazato G, Kobayashi RKT. Antibiofilm Effect of Biogenic Silver Nanoparticles Combined with Oregano Derivatives against Carbapenem-Resistant Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12040756. [PMID: 37107119 PMCID: PMC10135348 DOI: 10.3390/antibiotics12040756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Resistant bacteria may kill more people than COVID-19, so the development of new antibacterials is essential, especially against microbial biofilms that are reservoirs of resistant cells. Silver nanoparticles (bioAgNP), biogenically synthesized using Fusarium oxysporum, combined with oregano derivatives, present a strategic antibacterial mechanism and prevent the emergence of resistance against planktonic microorganisms. Antibiofilm activity of four binary combinations was tested against enteroaggregative Escherichia coli (EAEC) and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC): oregano essential oil (OEO) plus bioAgNP, carvacrol (Car) plus bioAgNP, thymol (Thy) plus bioAgNP, and Car plus Thy. The antibiofilm effect was accessed using crystal violet, MTT, scanning electron microscopy, and Chromobacterium violaceum anti-quorum-sensing assays. All binary combinations acted against preformed biofilm and prevented its formation; they showed improved antibiofilm activity compared to antimicrobials individually by reducing sessile minimal inhibitory concentration up to 87.5% or further decreasing biofilm metabolic activity and total biomass. Thy plus bioAgNP extensively inhibited the growth of biofilm in polystyrene and glass surfaces, disrupted three-dimensional biofilm structure, and quorum-sensing inhibition may be involved in its antibiofilm activity. For the first time, it is shown that bioAgNP combined with oregano has antibiofilm effect against bacteria for which antimicrobials are urgently needed, such as KPC.
Collapse
Affiliation(s)
- Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil
| | - Franciele Maira M B Teixeira
- Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de Sao Jose do Rio Preto, São José do Rio Preto 15090-000, Brazil
| | - Mara C L Nogueira
- Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de Sao Jose do Rio Preto, São José do Rio Preto 15090-000, Brazil
| | - Luciano A Panagio
- Laboratory of Medical Mycology and Oral Microbiology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Admilton G de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Laboratory of Electron Microscopy and Microanalysis, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Nelson Durán
- Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Renata K T Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
3
|
Zhu J, Tian Y, Cao L, Hu J, Yan J, Wang Z, Liu X. Comparison of the effects of AgNPs on the morphological and mechanical characteristics of cancerous cells. J Microsc 2023; 289:187-197. [PMID: 36565476 DOI: 10.1111/jmi.13166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Currently, silver nanoparticles (AgNPs) are the most produced nanoparticles in global market and have been widely utilized in the biomedical field. Here, we investigated the morphological and mechanical effects of AgNPs on cancerous cells of A549 cells and SMMC-7721 cells with atomic force microscope (AFM). The influence of AgNPs on the morphological properties and mechanical properties of cancerous cells were characterized utilizing the force-volume (FV) mode and force spectroscopy (FS) mode of AFM measurement. We mainly focus on the comparison of the effects of AgNPs on the two types of cancerous cells based on the fitting results of calculating the Young's moduli utilizing the Sneddon model. The results showed that the morphology changed little, but the mechanical properties of height, roughness, adhesion force and Young's moduli of two cancerous cells varied significantly with the stimulation of different concentrations of AgNPs. This research has provided insights into the classification and characterization of the effects of the various concentrations of AgNPs on the cancerous cells in vitro by utilizing AFM methodologies for disease therapy.
Collapse
Affiliation(s)
- Jiajing Zhu
- School of Engineering, University of Warwick, Coventry, UK.,Wheeled System Technology Department, China North Vehicle Research Institute, Beijing, China
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry, UK
| | - Liang Cao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.,Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Jing Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.,Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Jin Yan
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.,Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.,Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry, UK
| |
Collapse
|
4
|
Varma A, Warghane A, Dhiman NK, Paserkar N, Upadhye V, Modi A, Saini R. The role of nanocomposites against biofilm infections in humans. Front Cell Infect Microbiol 2023; 13:1104615. [PMID: 36926513 PMCID: PMC10011468 DOI: 10.3389/fcimb.2023.1104615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
The use of nanomaterials in several fields of science has undergone a revolution in the last few decades. It has been reported by the National Institutes of Health (NIH) that 65% and 80% of infections are accountable for at least 65% of human bacterial infections. One of their important applications in healthcare is the use of nanoparticles (NPs) to eradicate free-floating bacteria and those that form biofilms. A nanocomposite (NC) is a multiphase stable fabric with one or three dimensions that are much smaller than 100 nm, or systems with nanoscale repeat distances between the unique phases that make up the material. Using NC materials to get rid of germs is a more sophisticated and effective technique to destroy bacterial biofilms. These biofilms are refractory to standard antibiotics, mainly to chronic infections and non-healing wounds. Materials like graphene and chitosan can be utilized to make several forms of NCs, in addition to different metal oxides. The ability of NCs to address the issue of bacterial resistance is its main advantage over antibiotics. This review highlights the synthesis, characterization, and mechanism through which NCs disrupt Gram-positive and Gram-negative bacterial biofilms, and their relative benefits and drawbacks. There is an urgent need to develop materials like NCs with a larger spectrum of action due to the rising prevalence of human bacterial diseases that are multidrug-resistant and form biofilms.
Collapse
Affiliation(s)
- Anand Varma
- Arundeep Akshay Urja Pvt. Ltd. Gorakhpur, Uttar Pradesh, India
| | - Ashish Warghane
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Neena K. Dhiman
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Neha Paserkar
- Faculty of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
| | - Vijay Upadhye
- Centre of Research for Development (CR4D), Parul University, Vadodara, Gujarat, India
| | - Anupama Modi
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Metabolomic Profiling of the Responses of Planktonic and Biofilm Vibrio cholerae to Silver Nanoparticles. Antibiotics (Basel) 2022; 11:antibiotics11111534. [DOI: 10.3390/antibiotics11111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae causes cholera and can switch between planktonic and biofilm lifeforms, where biofilm formation enhances transmission, virulence, and antibiotic resistance. Due to antibiotic microbial resistance, new antimicrobials including silver nanoparticles (AgNPs) are being studied. Nevertheless, little is known about the metabolic changes exerted by AgNPs on both microbial lifeforms. Our objective was to evaluate the changes in the metabolomic profile of V. cholerae planktonic and biofilm cells in response to sublethal concentrations of AgNPs using MS2 untargeted metabolomics and chemoinformatics. A total of 690 metabolites were quantified among all groups. More metabolites were significantly modulated in planktonic cells (n = 71) compared to biofilm (n = 37) by the treatment. The chemical class profiles were distinct for both planktonic and biofilm, suggesting a phenotype-dependent metabolic response to the nanoparticles. Chemical enrichment analysis showed altered abundances of oxidized fatty acids (FA), saturated FA, phosphatidic acids, and saturated stearic acid in planktonic cells treated with AgNPs, which hints at a turnover of the membrane. In contrast, no chemical classes were enriched in the biofilm. In conclusion, this study suggests that the response of V. cholerae to silver nanoparticles is phenotype-dependent and that planktonic cells experience a lipid remodeling process, possibly related to an adaptive mechanism involving the cell membrane.
Collapse
|
6
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Salimiyan rizi K. MXene nanosheets as a novel nanomaterial with antimicrobial applications: A literature review. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Rawangkan A, Siriphap A, Yosboonruang A, Kiddee A, Pook-In G, Saokaew S, Sutheinkul O, Duangjai A. Potential Antimicrobial Properties of Coffee Beans and Coffee By-Products Against Drug-Resistant Vibrio cholerae. Front Nutr 2022; 9:865684. [PMID: 35548583 PMCID: PMC9083461 DOI: 10.3389/fnut.2022.865684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae is the causative organism of the cholera epidemic, and it remains a serious global health problem, particularly the multidrug-resistant strain, despite the development of several generic drugs and vaccines over time. Natural products have long been exploited for the treatment of various diseases, and this study aimed to evaluate the in vitro antibacterial activity of coffee beans and coffee by-products against V. cholerae antimicrobial resistant strains. A total of 9 aqueous extracts were investigated, including light coffee (LC), medium coffee (MC), dark coffee (DC), dried green coffee (DGC), dried red coffee (DRC), fresh red coffee (FRC), Arabica leaf (AL), Robusta leaf (RL), and coffee pulp (CP). The influential coffee phytochemicals, i.e., chlorogenic acid (CGA), caffeic acid (CA), and caffeine, were determined using HPLC. The antibacterial properties were tested by agar well-diffusion techniques, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined against 20 V. cholerae isolates. The results revealed that all tested strains were sensitive to coffee extracts, with MIC and MBC values in the range of 3.125-25.0 mg/mL and 12.5-50.0 mg/mL, respectively. With a MIC of 6.25 mg/mL, DGC, DRC, and CP appeared to be the most effective compounds against 65, 60, and 55% of clinical strains, respectively. The checkerboard assay revealed that the combination of coffee extract and tetracycline was greater than either treatment alone, with the fractional inhibitory concentration index (FICI) ranging from 0.005 to 0.258. It is important to note that CP had the lowest FICI (0.005) when combined with tetracycline at 60 ng/mL, which is the most effective dose against V. cholerae six-drug resistance strains (azithromycin, colistin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim), with a MIC of 47.5 μg/mL (MIC alone = 12.5 mg/mL). Time killing kinetics analysis suggested that CA might be the most effective treatment for drug-resistant V. cholerae as it reduced bacterial growth by 3 log10 CFU/mL at a concentration of 8 mg/mL within 1 h, via disrupting membrane permeability, as confirmed by scanning electron microscopy (SEM). This is the first report showing that coffee beans and coffee by-product extracts are an alternative for multidrug-resistant V. cholerae treatment.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | | | | | - Anong Kiddee
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Grissana Pook-In
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | | | - Acharaporn Duangjai
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
9
|
Abriat C, Gazil O, Heuzey MC, Daigle F, Virgilio N. The Polymeric Matrix Composition of Vibrio cholerae Biofilms Modulate Resistance to Silver Nanoparticles Prepared by Hydrothermal Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35356-35364. [PMID: 34286588 DOI: 10.1021/acsami.1c07455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofilms represent the dominant microbial lifestyle in nature. These complex microbial communities in which bacteria are embedded in a self-produced protective polymeric extracellular matrix, display an enhanced resistance to antimicrobials and thus represent a major health challenge. Although nanoparticles have proven to be effective against bacteria, the interactions between nanoparticles and the polymeric biofilm matrix are still unclear. In this work, silver nanoparticles (AgNPs) were used on mature biofilms formed by the pathogen Vibrio cholerae, and their effects on the biofilm microstructure were evaluated. Bacteria cells within mature biofilms showed an increased tolerance to AgNPs, with their elimination requiring a concentration nine times higher than planktonic cells. Mutant strains not able to form a pellicle biofilm were four times more susceptible to AgNPs than the wild-type strain forming a strong biofilm. Moreover, electron microscopy analysis revealed that AgNPs interacted with the extracellular matrix components and disrupted its microstructure. Finally, two major proteins, Bap1 and RbmA, appeared to mediate the biofilm bacterial resistance to AgNPs. This work highlights the role of the polymeric biofilm matrix composition in resistance to AgNPs. It underlines how crucial it is to understand and characterize the interactions between nanoparticles and the biofilm matrix, in order to design appropriate metallic nanoparticles efficient against bacterial biofilms.
Collapse
Affiliation(s)
- Clémence Abriat
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
- Department of Microbiology, Infection and Immunology, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Olivier Gazil
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
| | - Marie-Claude Heuzey
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
| | - France Daigle
- Department of Microbiology, Infection and Immunology, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Nick Virgilio
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
| |
Collapse
|
10
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021; 37:108. [PMID: 34046779 PMCID: PMC8159659 DOI: 10.1007/s11274-021-03070-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
11
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021. [PMID: 34046779 DOI: 10.1007/s11274-021-03070-x/tables/5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
12
|
Saberpour M, Bakhshi B, Najar-peerayeh S. Evaluation of the Antimicrobial and Antibiofilm Effect of Chitosan Nanoparticles as Carrier for Supernatant of Mesenchymal Stem Cells on Multidrug-Resistant Vibrio cholerae. Infect Drug Resist 2020; 13:2251-2260. [PMID: 32765001 PMCID: PMC7367937 DOI: 10.2147/idr.s244990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023] Open
Abstract
AIM The aim of the present study was to evaluate the in vitro antimicrobial and antibiofilm activity of chitosan nanoparticles (CS NPs) incorporated with mesenchymal stem cells-derived conditioned media (MSCs CM) on MDR Vibrio cholerae strains. MATERIALS AND METHODS Chitosan NPs were prepared and characterized by dynamic light scattering (DLS), scanning electron microscope (SEM) and zeta potential measurement. MSCs CM were prepared and entrapped into MSCs CM-CS NPs composite and its release efficiency was measured. Antibacterial efficacy of nano structures was determined by disk diffusion and broth microdilution methods. Antibiofilm activity was assessed by crystal violet assay. RESULTS BM-MSCs were characterized to be negative for CD34 and CD45 markers, positive for CD73 and CD44 markers, and able to differentiate into osteoblast and adipocyte cells. The mean particle size of 96.6% of chitosan NPs was 414.9 nm with a suitable zeta potential and SEM morphology. Entrapment efficiency of MSCs CM-CS NPs was 76.9%. Unstimulated MSCs CM-CS NPs composite as a novel and proficient therapeutic nanostructure against MDR V. cholerae strains showed the synergistic activity of the two components of MSCs CM and CS NPs, leading to greater bacterial killing compared to control groups. MSCs CM more efficiently inhibited biofilm formation, although MSCs CM-CS NPs was also appeared to be effective in inhibiting biofilm formation compared to CS NPs and control group. CONCLUSION The designed nanodrug composite showed the best release in conditions mimicking the physiological conditions of the intestinal lumen. Given the fact that no overuse or genetic event would cause the emergence of antimicrobial resistance against the MSCs CM-CS NPs nanodrug, it could be considered as a promising alternative for the treatment of MDR V. cholerae infections in clinical settings.
Collapse
Affiliation(s)
- Masoumeh Saberpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University Tehran, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University Tehran, Tehran, Iran
| | - Shahin Najar-peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University Tehran, Tehran, Iran
| |
Collapse
|
13
|
Deschênes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci 2020; 277:102106. [PMID: 31981890 DOI: 10.1016/j.cis.2020.102106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The attachment of microbial communities to surfaces is a well-known problem recognized to be involved in a variety of critical issues in the sectors of food processing, chronic wounds, infection from implants, clogging of membranes and corrosion of equipment. Considering the importance of the detrimental impact of biofouling, it has received much attention in the scientific community and from concerned stakeholders. With the development of nanotechnology and the nowadays widespread use of engineered nanoparticles (ENPs), concerns have been raised regarding their fate in terrestrial and aquatic environments. Safety aspects and public health issues are critical in the management of handling nanomaterials and their nanowastes. The interactions of various types of nanoparticles (NPs) with planktonic bacteria have also received attention due to their antimicrobial properties. However, their behavior in regard to biofilms is not well understood although, in the environment, most of the bacteria prefer living in sessile communities. The question appears relevant considering the need to build knowledge on the fate of nanoparticles and the fact that no one can exclude the risk of accumulation of nanoparticles in biofilms and on surfaces leading to a form of nanofouling involving both engineered nanoparticles (ENPs) and nanoplastics. The present analysis of recent research accounts allows in identifying that (1) research activities related to water remediation systems have been mostly oriented on the impact of NPs on pre-existing biofilms, (2) experimental designs are restricted to few scenarios of exposure, usually limited to relative short-time periods although nanofouling could favour the development of multi-resistant bacterial species through sub-lethal exposures over prolong periods of time (3) nanofouling in other systems in which biofilms develop remains to be addressed, and (4) new research directions are required for investigating the mechanisms involved and the subsequent impact of nanofouling on bacterial consortium responses encountered in a variety of environments such as those prevailing in food production/processing settings. Finally, this review aims at providing recent information and insights on nanoparticle-bacterial interactions in the context of biofilms in order to supply an updated outlook of research perspectives that could help establish the framework for production, use and fate of nanomaterials as well as future research directions.
Collapse
Affiliation(s)
- Louise Deschênes
- Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Timothy Ells
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| |
Collapse
|