1
|
Szwed M, de Jesus AV, Kossowski B, Ahmadi H, Rutkowska E, Mysak Y, Baumbach C, Kaczmarek-Majer K, Degórska A, Skotak K, Sitnik-Warchulska K, Lipowska M, Grellier J, Markevych I, Herting MM. Air pollution and cortical myelin T1w/T2w ratio estimates in school-age children from the ABCD and NeuroSmog studies. Dev Cogn Neurosci 2025; 73:101538. [PMID: 40086410 PMCID: PMC11952023 DOI: 10.1016/j.dcn.2025.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/16/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Air pollution affects human health and may disrupt brain maturation, including axon myelination, critical for efficient neural signaling. Here, we assess the impact of prenatal and current long-term particulate matter (PM) and nitrogen dioxide (NO2) exposure on cortical T1w/T2w ratios - a proxy for myelin content - in school-age children from the Adolescent Brain Cognitive Development (ABCD) Study (United States; N = 2021) and NeuroSmog study (Poland; N = 577), using Siemens scanners. Across both samples, we found that NO2 and PM were not significantly associated with cortical T1w/T2w except for one association of PM10 with lower T1w/T2w in the precuneus in NeuroSmog. Superficially, ABCD Study analyses including data from all scanner types (Siemens, GE, Philips; N = 3089) revealed a negative association between NO₂ exposure and T1w/T2w ratios. However, this finding could be an artifact of between-site sociodemographic differences and large scanner-type-related measurement differences. While significant associations between air pollution and cortical myelin were largely absent, these findings do not rule out the possibility that air pollution affects cortical myelin during other exposure periods/stages of neurodevelopment. Future research should examine these relationships across diverse populations and developmental periods using unified analysis methods to better understand the potential neurotoxic effects of air pollution.
Collapse
Affiliation(s)
- Marcin Szwed
- Institute of Psychology, Jagiellonian University, Kraków, Poland.
| | - Alethea V de Jesus
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Emilia Rutkowska
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Yarema Mysak
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Clemens Baumbach
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Katarzyna Kaczmarek-Majer
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Degórska
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland
| | - Krzysztof Skotak
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland
| | - Katarzyna Sitnik-Warchulska
- Institute of Applied Psychology, Faculty of Management and Social Communication, Jagiellonian University, Krakow, Poland
| | - Małgorzata Lipowska
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Institute of Psychology, University of Gdansk, Gdansk, Poland
| | - James Grellier
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, United Kingdom
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Health and quality of life in a green and sustainable environment, SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA; Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| |
Collapse
|
2
|
Moskovich S, Shtangel O, Mezer AA. Approximating R1 and R2: A Quantitative Approach to Clinical Weighted MRI. Hum Brain Mapp 2024; 45:e70102. [PMID: 39698763 PMCID: PMC11656103 DOI: 10.1002/hbm.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Weighted MRI images are widely used in clinical as well as open-source neuroimaging databases. Weighted images such as T1-weighted, T2-weighted, and proton density-weighted (T1w, T2w, and PDw, respectively) are used for evaluating the brain's macrostructure; however, their values cannot be used for microstructural analysis, as they lack physical meaning. Quantitative MRI (qMRI) relaxation rate parameters (e.g., R1 and R2) do contain microstructural physical meaning. Nevertheless, qMRI is rarely done in large-scale clinical databases. Currently, the weighted images ratio T1w/T2w is used as a quantifier to approximate the brain's microstructure. In this paper, we test three additional quantifiers that approximate quantitative maps, which can help bring quantitative MRI to the clinic for easy use. Following the signal equations and using simple mathematical operations, we combine the T1w, T2w, and PDw images to estimate the R1 and R2 maps. We find that two of these quantifiers (T1w/PDw and T1w/ln(T2w)) can approximate R1, and that (ln(T2w/PDw)) can approximate R2, in 3 datasets that were tested. We find that this approach also can be applied to T2w scans taken from widely available DTI (Diffusion Tensor Imaging) datasets. We tested these quantifiers on both in vitro phantom and in vivo human datasets. We found that the quantifiers accurately represent the quantitative parameters across datasets. Finally, we tested the quantifiers within a clinical context, and found that they are robust across datasets. Our work provides a simple pipeline to enhance the usability and quantitative accuracy of MRI weighted images.
Collapse
Affiliation(s)
- Shachar Moskovich
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Oshrat Shtangel
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Aviv A. Mezer
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
3
|
Shimozono T, Shiiba T, Takano K. Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson's disease. Eur Radiol 2024; 34:7921-7933. [PMID: 38958697 DOI: 10.1007/s00330-024-10886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES To clarify the association between a radiomics score (Rad-score) derived from T1-weighted signal intensity to T2-weighted signal intensity (T1-w/T2-w) ratio images and the progression of motor symptoms in Parkinson's disease (PD). MATERIALS AND METHODS This retrospective study included patients with PD enrolled in the Parkinson's Progression Markers Initiative. The Movement Disorders Society-Unified Parkinson's Disease Rating Scale Part III score ≥ 33 and/or Hoehn and Yahr stage ≥ 3 indicated motor function decline. The Rad-score was constructed using radiomics features extracted from T1-w/T2-w ratio images. The Kaplan-Meier analysis and Cox regression analyses were used to assess the time differences in motor function decline between the high and low Rad-score groups. RESULTS A total of 171 patients with PD were divided into training (n = 101, mean age at baseline, 61.6 ± 9.3 years) and testing (n = 70, mean age at baseline, 61.6 ± 10 years). The patients in the high Rad-score group had a shorter time to motor function decline than those in the low Rad-score group in the training dataset (log-rank test, p < 0.001) and testing dataset (log-rank test, p < 0.001). The multivariate Cox regression using the Rad-score and clinical factors revealed a significant association between the Rad-score and motor function decline in the training dataset (HR = 2.368, 95%CI:1.423-3.943, p < 0.001) and testing dataset (HR = 2.931, 95%CI:1.472-5.837, p = 0.002). CONCLUSION Rad-scores based on radiomics features derived from T1-w/T2-w ratio images were associated with the progression of motor symptoms in PD. CLINICAL RELEVANCE STATEMENT The radiomics score derived from the T1-weighted/T2-weighted ratio images offers a predictive tool for assessing the progression of motor symptom in patients with PD. KEY POINTS Radiomics score derived from T1-weighted/T2-weighted ratio images is correlated with the motor symptoms of Parkinson's disease. A high radiomics score correlated with faster motor function decline in patients with Parkinson's disease. The proposed radiomics score offers predictive insight into the progression of motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Takuya Shimozono
- Department of Neuroimaging and Brain Science, Major in Health Science, Graduate School of Health Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takuro Shiiba
- Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Kazuki Takano
- Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
4
|
Wan B, Saberi A, Paquola C, Schaare HL, Hettwer MD, Royer J, John A, Dorfschmidt L, Bayrak Ş, Bethlehem RAI, Eickhoff SB, Bernhardt BC, Valk SL. Microstructural asymmetry in the human cortex. Nat Commun 2024; 15:10124. [PMID: 39578424 PMCID: PMC11584796 DOI: 10.1038/s41467-024-54243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
The human cerebral cortex shows hemispheric asymmetry, yet the microstructural basis of this asymmetry remains incompletely understood. Here, we probe layer-specific microstructural asymmetry using one post-mortem male brain. Overall, anterior and posterior regions show leftward and rightward asymmetry respectively, but this pattern varies across cortical layers. A similar anterior-posterior pattern is observed using in vivo Human Connectome Project (N = 1101) T1w/T2w microstructural data, with average cortical asymmetry showing the strongest similarity with post-mortem-based asymmetry of layer III. Moreover, microstructural asymmetry is found to be heritable, varies as a function of age and sex, and corresponds to intrinsic functional asymmetry. We also observe a differential association of language and markers of mental health with microstructural asymmetry patterns at the individual level, illustrating a functional divergence between inferior-superior and anterior-posterior microstructural axes, possibly anchored in development. Last, we could show concordant evidence with alternative in vivo microstructural measures: magnetization transfer (N = 286) and quantitative T1 (N = 50). Together, our study highlights microstructural asymmetry in the human cortex and its functional and behavioral relevance.
Collapse
Grants
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Graduate Academy Leipzig, and Mitacs Globalink Research Award.
- German Ministry for Education and Research (BMBF) and the Max Planck Society
- National Science and Engineering Research Council of Canada (NSERC Discovery-1304413), Canadian Institutes of Health Research (FDN-154298, PJT-174995), SickKids Foundation (NI17-039), BrainCanada, FRQ-S, the Tier-2 Canada Research Chairs program, and Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL).
- Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) and Otto Hahn Award at Max Planck Society.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany.
| | - Amin Saberi
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - H Lina Schaare
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - Meike D Hettwer
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Alexandra John
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - Lena Dorfschmidt
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Şeyma Bayrak
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Jørgensen KN, Nerland S, Slapø NB, Norbom LB, Mørch-Johnsen L, Wortinger LA, Barth C, Andreou D, Maximov II, Geier OM, Andreassen OA, Jönsson EG, Agartz I. Assessing regional intracortical myelination in schizophrenia spectrum and bipolar disorders using the optimized T1w/T2w-ratio. Psychol Med 2024; 54:2369-2379. [PMID: 38563302 DOI: 10.1017/s0033291724000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Dysmyelination could be part of the pathophysiology of schizophrenia spectrum (SCZ) and bipolar disorders (BPD), yet few studies have examined myelination of the cerebral cortex. The ratio of T1- and T2-weighted magnetic resonance images (MRI) correlates with intracortical myelin. We investigated the T1w/T2w-ratio and its age trajectories in patients and healthy controls (CTR) and explored associations with antipsychotic medication use and psychotic symptoms. METHODS Patients with SCZ (n = 64; mean age = 30.4 years, s.d. = 9.8), BPD (n = 91; mean age 31.0 years, s.d. = 10.2), and CTR (n = 155; mean age = 31.9 years, s.d. = 9.1) who participated in the TOP study (NORMENT, University of Oslo, Norway) were clinically assessed and scanned using a General Electric 3 T MRI system. T1w/T2w-ratio images were computed using an optimized pipeline with intensity normalization and field inhomogeneity correction. Vertex-wise regression models were used to compare groups and examine group × age interactions. In regions showing significant differences, we explored associations with antipsychotic medication use and psychotic symptoms. RESULTS No main effect of diagnosis was found. However, age slopes of the T1w/T2w-ratio differed significantly between SCZ and CTR, predominantly in frontal and temporal lobe regions: Lower T1w/T2w-ratio values with higher age were found in CTR, but not in SCZ. Follow-up analyses revealed a more positive age slope in patients who were using antipsychotics and patients using higher chlorpromazine-equivalent doses. CONCLUSIONS While we found no evidence of reduced intracortical myelin in SCZ or BPD relative to CTR, different regional age trajectories in SCZ may suggest a promyelinating effect of antipsychotic medication.
Collapse
Affiliation(s)
- Kjetil Nordbø Jørgensen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Stener Nerland
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora Berz Slapø
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Laura Anne Wortinger
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Claudia Barth
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver M Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik G Jönsson
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Agartz
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
6
|
Jansen MG, Zwiers MP, Marques JP, Chan KS, Amelink JS, Altgassen M, Oosterman JM, Norris DG. The Advanced BRain Imaging on ageing and Memory (ABRIM) data collection: Study design, data processing, and rationale. PLoS One 2024; 19:e0306006. [PMID: 38905233 PMCID: PMC11192316 DOI: 10.1371/journal.pone.0306006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
To understand the neurocognitive mechanisms that underlie heterogeneity in cognitive ageing, recent scientific efforts have led to a growing public availability of imaging cohort data. The Advanced BRain Imaging on ageing and Memory (ABRIM) project aims to add to these existing datasets by taking an adult lifespan approach to provide a cross-sectional, normative database with a particular focus on connectivity, myelinization and iron content of the brain in concurrence with cognitive functioning, mechanisms of reserve, and sleep-wake rhythms. ABRIM freely shares MRI and behavioural data from 295 participants between 18-80 years, stratified by age decade and sex (median age 52, IQR 36-66, 53.20% females). The ABRIM MRI collection consists of both the raw and pre-processed structural and functional MRI data to facilitate data usage among both expert and non-expert users. The ABRIM behavioural collection includes measures of cognitive functioning (i.e., global cognition, processing speed, executive functions, and memory), proxy measures of cognitive reserve (e.g., educational attainment, verbal intelligence, and occupational complexity), and various self-reported questionnaires (e.g., on depressive symptoms, pain, and the use of memory strategies in daily life and during a memory task). In a sub-sample (n = 120), we recorded sleep-wake rhythms using an actigraphy device (Actiwatch 2, Philips Respironics) for a period of 7 consecutive days. Here, we provide an in-depth description of our study protocol, pre-processing pipelines, and data availability. ABRIM provides a cross-sectional database on healthy participants throughout the adult lifespan, including numerous parameters relevant to improve our understanding of cognitive ageing. Therefore, ABRIM enables researchers to model the advanced imaging parameters and cognitive topologies as a function of age, identify the normal range of values of such parameters, and to further investigate the diverse mechanisms of reserve and resilience.
Collapse
Affiliation(s)
- Michelle G. Jansen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marcel P. Zwiers
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jose P. Marques
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kwok-Shing Chan
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jitse S. Amelink
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Radboud University, Nijmegen, the Netherlands
| | - Mareike Altgassen
- Department of Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joukje M. Oosterman
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - David G. Norris
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Wiltgen T, Voon C, Van Leemput K, Wiestler B, Mühlau M. Intensity scaling of conventional brain magnetic resonance images avoiding cerebral reference regions: A systematic review. PLoS One 2024; 19:e0298642. [PMID: 38483873 PMCID: PMC10939249 DOI: 10.1371/journal.pone.0298642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Conventional brain magnetic resonance imaging (MRI) produces image intensities that have an arbitrary scale, hampering quantification. Intensity scaling aims to overcome this shortfall. As neurodegenerative and inflammatory disorders may affect all brain compartments, reference regions within the brain may be misleading. Here we summarize approaches for intensity scaling of conventional T1-weighted (w) and T2w brain MRI avoiding reference regions within the brain. METHODS Literature was searched in the databases of Scopus, PubMed, and Web of Science. We included only studies that avoided reference regions within the brain for intensity scaling and provided validating evidence, which we divided into four categories: 1) comparative variance reduction, 2) comparative correlation with clinical parameters, 3) relation to quantitative imaging, or 4) relation to histology. RESULTS Of the 3825 studies screened, 24 fulfilled the inclusion criteria. Three studies used scaled T1w images, 2 scaled T2w images, and 21 T1w/T2w-ratio calculation (with double counts). A robust reduction in variance was reported. Twenty studies investigated the relation of scaled intensities to different types of quantitative imaging. Statistically significant correlations with clinical or demographic data were reported in 8 studies. Four studies reporting the relation to histology gave no clear picture of the main signal driver of conventional T1w and T2w MRI sequences. CONCLUSIONS T1w/T2w-ratio calculation was applied most often. Variance reduction and correlations with other measures suggest a biologically meaningful signal harmonization. However, there are open methodological questions and uncertainty on its biological underpinning. Validation evidence on other scaling methods is even sparser.
Collapse
Affiliation(s)
- Tun Wiltgen
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Cuici Voon
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Koen Van Leemput
- Department of Neuroscience and Biomedical Engineering, Aalto University Helsinki, Espoo, Finland
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benedikt Wiestler
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Fang M, Huang H, Yang J, Zhang S, Wu Y, Huang CC. Changes in microstructural similarity of hippocampal subfield circuits in pathological cognitive aging. Brain Struct Funct 2024; 229:311-321. [PMID: 38147082 DOI: 10.1007/s00429-023-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/02/2023] [Indexed: 12/27/2023]
Abstract
The hippocampal networks support multiple cognitive functions and may have biological roles and functions in pathological cognitive aging (PCA) and its associated diseases, which have not been explored. In the current study, a total of 116 older adults with 39 normal controls (NC) (mean age: 52.3 ± 13.64 years; 16 females), 39 mild cognitive impairment (MCI) (mean age: 68.15 ± 9.28 years, 14 females), and 38 dementia (mean age: 73.82 ± 8.06 years, 8 females) were included. The within-hippocampal subfields and the cortico-hippocampal circuits were assessed via a micro-structural similarity network approach using T1w/T2w ratio and regional gray matter tissue probability maps, respectively. An analysis of covariance was conducted to identify between-group differences in structural similarities among hippocampal subfields. The partial correlation analyses were performed to associate changes in micro-structural similarities with cognitive performance in the three groups, controlling the effect of age, sex, education, and cerebral small-vessel disease. Compared with the NC, an altered T1w/T2w ratio similarity between left CA3 and left subiculum was observed in the mild cognitive impairment (MCI) and dementia. The left CA3 was the most impaired region correlated with deteriorated cognitive performance. Using these regions as seeds for GM similarity comparisons between hippocampal subfields and cortical regions, group differences were observed primarily between the left subiculum and several cortical regions. By utilizing T1w/T2w ratio as a proxy measure for myelin content, our data suggest that the imbalanced synaptic weights within hippocampal CA3 provide a substrate to explain the abnormal firing characteristics of hippocampal neurons in PCA. Furthermore, our work depicts specific brain structural characteristics of normal and pathological cognitive aging and suggests a potential mechanism for cognitive aging heterogeneity.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanghuang Huang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Shuying Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Yujie Wu
- Changning Mental Health Center, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
9
|
Smith DV, Ludwig RM, Dennison JB, Reeck C, Fareri DS. An fMRI Dataset on Social Reward Processing and Decision Making in Younger and Older Adults. Sci Data 2024; 11:158. [PMID: 38302470 PMCID: PMC10834522 DOI: 10.1038/s41597-024-02931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Behavioural and neuroimaging research has shown that older adults are less sensitive to financial losses compared to younger adults. Yet relatively less is known about age-related differences in social decisions and social reward processing. As part of a pilot study, we collected behavioural and functional magnetic resonance imaging (fMRI) data from 50 participants (Younger: N = 26, ages 18-34 years; Older: N = 24, ages 63-80 years) who completed three tasks in the scanner: an economic trust game as the investor with three partners (computer, stranger, friend) as the investee; a card-guessing task with monetary gains and losses shared with three partners (computer, stranger, friend); and an ultimatum game as responder to three anonymous proposers (computer, age-similar adults, age-dissimilar adults). We also collected B0 field maps and high-resolution structural images (T1-weighted and T2-weighted images). These data could be reused to answer questions about moment-to-moment variability in fMRI signal, representational similarity between tasks, and brain structure.
Collapse
Affiliation(s)
| | - Rita M Ludwig
- Temple University, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey B Dennison
- Temple University, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
10
|
Li H, Jacob MA, Cai M, Duering M, Chamberland M, Norris DG, Kessels RPC, de Leeuw FE, Marques JP, Tuladhar AM. Regional cortical thinning, demyelination and iron loss in cerebral small vessel disease. Brain 2023; 146:4659-4673. [PMID: 37366338 PMCID: PMC10629800 DOI: 10.1093/brain/awad220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
The link between white matter hyperintensities (WMH) and cortical thinning is thought to be an important pathway by which WMH contributes to cognitive deficits in cerebral small vessel disease (SVD). However, the mechanism behind this association and the underlying tissue composition abnormalities are unclear. The objective of this study is to determine the association between WMH and cortical thickness, and the in vivo tissue composition abnormalities in the WMH-connected cortical regions. In this cross-sectional study, we included 213 participants with SVD who underwent standardized protocol including multimodal neuroimaging scans and cognitive assessment (i.e. processing speed, executive function and memory). We identified the cortex connected to WMH using probabilistic tractography starting from the WMH and defined the WMH-connected regions at three connectivity levels (low, medium and high connectivity level). We calculated the cortical thickness, myelin and iron of the cortex based on T1-weighted, quantitative R1, R2* and susceptibility maps. We used diffusion-weighted imaging to estimate the mean diffusivity of the connecting white matter tracts. We found that cortical thickness, R1, R2* and susceptibility values in the WMH-connected regions were significantly lower than in the WMH-unconnected regions (all Pcorrected < 0.001). Linear regression analyses showed that higher mean diffusivity of the connecting white matter tracts were related to lower thickness (β = -0.30, Pcorrected < 0.001), lower R1 (β = -0.26, Pcorrected = 0.001), lower R2* (β = -0.32, Pcorrected < 0.001) and lower susceptibility values (β = -0.39, Pcorrected < 0.001) of WMH-connected cortical regions at high connectivity level. In addition, lower scores on processing speed were significantly related to lower cortical thickness (β = 0.20, Pcorrected = 0.030), lower R1 values (β = 0.20, Pcorrected = 0.006), lower R2* values (β = 0.29, Pcorrected = 0.006) and lower susceptibility values (β = 0.19, Pcorrected = 0.024) of the WMH-connected regions at high connectivity level, independent of WMH volumes and the cortical measures of WMH-unconnected regions. Together, our study demonstrated that the microstructural integrity of white matter tracts passing through WMH is related to the regional cortical abnormalities as measured by thickness, R1, R2* and susceptibility values in the connected cortical regions. These findings are indicative of cortical thinning, demyelination and iron loss in the cortex, which is most likely through the disruption of the connecting white matter tracts and may contribute to processing speed impairment in SVD, a key clinical feature of SVD. These findings may have implications for finding intervention targets for the treatment of cognitive impairment in SVD by preventing secondary degeneration.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Mina A Jacob
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Mengfei Cai
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080 Guangzhou, China
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, 4051 Basel, Switzerland
- LMU Munich, University Hospital, Institute for Stroke and Dementia Research (ISD), 81377 Munich, Germany
| | - Maxime Chamberland
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center, 6525 GC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, 5803 AC Venray, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
11
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and Functional Dissociations between Variably Present Anterior Lateral Prefrontal Sulci. J Cogn Neurosci 2023; 35:1846-1867. [PMID: 37677051 PMCID: PMC10586811 DOI: 10.1162/jocn_a_02049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid specific. Although recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from two samples encompassing 82 young adult humans (aged 22-36 years) and show that the dorsal and ventral components of the paraintermediate frontal sulcus, or pimfs, present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in LPFC anatomy and function, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and suggest that future individual-level parcellations could benefit from incorporating sulcal anatomy when delineating LPFC cortical regions.
Collapse
|
12
|
Weissman DG, Baum GL, Sanders A, Rosen ML, Barch DM, McLaughlin KA, Somerville LH. Family income is not significantly associated with T1w/T2w ratio in the Human Connectome Project in Development. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:10.1162/imag_a_00021. [PMID: 39006919 PMCID: PMC11242614 DOI: 10.1162/imag_a_00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Growing evidence indicates that brain development varies as a function of family socioeconomic status (SES). Numerous studies have demonstrated that children from low-SES backgrounds have thinner cortex than children from higher-SES backgrounds. A recent study in a large developmental sample found widespread associations between lower SES and greater cortical T1w/T2w ratio-thought to be an indirect proxy for cortical myelin. We evaluated the association of family income with cortical T1w/T2w ratio as a function of age in the Human Connectome Project in Development sample of 989 youth aged 8-21 years. We observed no associations between family income and T1w/T2w ratio that were significant after corrections for multiple comparisons at the region, network, or whole-brain level. Region of practical equivalence (ROPE) analyses were also consistent with the absence of an association between family income and T1w/T2w ratio. We discuss potential methodological sources of inconsistency between this and the previous study examining the same question. While the question of whether family income may influence cortical myelin development remains, these null results may indicate that the association between SES and cortical myelin development may not be as strong as with other aspects of brain structure.
Collapse
Affiliation(s)
- David G. Weissman
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Graham L. Baum
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Ashley Sanders
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Maya L. Rosen
- Program in Neuroscience, Smith College, Northampton, MA, United States
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | | | - Leah H. Somerville
- Department of Psychology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
13
|
Grotheer M, Bloom D, Kruper J, Richie-Halford A, Zika S, Aguilera González VA, Yeatman JD, Grill-Spector K, Rokem A. Human white matter myelinates faster in utero than ex utero. Proc Natl Acad Sci U S A 2023; 120:e2303491120. [PMID: 37549280 PMCID: PMC10438384 DOI: 10.1073/pnas.2303491120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
The formation of myelin, the fatty sheath that insulates nerve fibers, is critical for healthy brain function. A fundamental open question is what impact being born has on myelin growth. To address this, we evaluated a large (n = 300) cross-sectional sample of newborns from the Developing Human Connectome Project (dHCP). First, we developed software for the automated identification of 20 white matter bundles in individual newborns that is well suited for large samples. Next, we fit linear models that quantify how T1w/T2w (a myelin-sensitive imaging contrast) changes over time at each point along the bundles. We found faster growth of T1w/T2w along the lengths of all bundles before birth than right after birth. Further, in a separate longitudinal sample of preterm infants (N = 34), we found lower T1w/T2w than in full-term peers measured at the same age. By applying the linear models fit on the cross-section sample to the longitudinal sample of preterm infants, we find that their delay in T1w/T2w growth is well explained by the amount of time they spent developing in utero and ex utero. These results suggest that white matter myelinates faster in utero than ex utero. The reduced rate of myelin growth after birth, in turn, explains lower myelin content in individuals born preterm and could account for long-term cognitive, neurological, and developmental consequences of preterm birth. We hypothesize that closely matching the environment of infants born preterm to what they would have experienced in the womb may reduce delays in myelin growth and hence improve developmental outcomes.
Collapse
Affiliation(s)
- Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - David Bloom
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - John Kruper
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - Adam Richie-Halford
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - Stephanie Zika
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - Vicente A. Aguilera González
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - Jason D. Yeatman
- Department of Psychology, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
- Graduate School of Education, Stanford University, Stanford, CA94305
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA94305
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| |
Collapse
|
14
|
Oh J, Crockett RA, Hsu CL, Dao E, Tam R, Liu-Ambrose T. Resistance Training Maintains White Matter and Physical Function in Older Women with Cerebral Small Vessel Disease: An Exploratory Analysis of a Randomized Controlled Trial. J Alzheimers Dis Rep 2023; 7:627-639. [PMID: 37483319 PMCID: PMC10357123 DOI: 10.3233/adr-220113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/17/2023] [Indexed: 07/25/2023] Open
Abstract
Background As the aging population grows, there is an increasing need to develop accessible interventions against risk factors for cognitive impairment and dementia, such as cerebral small vessel disease (CSVD). The progression of white matter hyperintensities (WMHs), a key hallmark of CSVD, can be slowed by resistance training (RT). We hypothesize RT preserves white matter integrity and that this preservation is associated with improved cognitive and physical function. Objective To determine if RT preserves regional white matter integrity and if any changes are associated with cognitive and physical outcomes. Methods Using magnetic resonance imaging data from a 12-month randomized controlled trial, we compared the effects of a twice-weekly 60-minute RT intervention versus active control on T1-weighted over T2-weighted ratio (T1w/T2w; a non-invasive proxy measure of white matter integrity) in a subset of study participants (N = 21 females, mean age = 69.7 years). We also examined the association between changes in T1w/T2w with two key outcomes of the parent study: (1) selective attention and conflict resolution, and (2) peak muscle power. Results Compared with an active control group, RT increased T1w/T2w in the external capsule (p = 0.024) and posterior thalamic radiations (p = 0.013) to a greater degree. Increased T1w/T2w in the external capsule was associated with an increase in peak muscle power (p = 0.043) in the RT group. Conclusion By maintaining white matter integrity, RT may be a promising intervention to counteract the pathological changes that accompany CSVD, while improving functional outcomes such as muscle power.
Collapse
Affiliation(s)
- Jean Oh
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, Canada
| | - Rachel A. Crockett
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, Canada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Chun-Liang Hsu
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, Canada
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Elizabeth Dao
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
15
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and functional dissociations between variably present anterior lateral prefrontal sulci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542301. [PMID: 37292839 PMCID: PMC10245924 DOI: 10.1101/2023.05.25.542301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid-specific. While recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from 72 young adult humans aged 22-36 and show that dorsal and ventral components of the paraintermediate frontal sulcus (pimfs) present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in anatomy and function in LPFC, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and highlight the importance of considering individual anatomy when investigating structural and functional features of the cortex.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Kevin S. Weiner
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
16
|
Guo Y, Dong D, Wu H, Xue Z, Zhou F, Zhao L, Li Z, Feng T. The intracortical myelin content of impulsive choices: results from T1- and T2-weighted MRI myelin mapping. Cereb Cortex 2023; 33:7163-7174. [PMID: 36748995 PMCID: PMC10422924 DOI: 10.1093/cercor/bhad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyuan Xue
- School of Humanities and Management, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Chen L, Wu Z, Zhao F, Wang Y, Lin W, Wang L, Li G. An attention-based context-informed deep framework for infant brain subcortical segmentation. Neuroimage 2023; 269:119931. [PMID: 36746299 PMCID: PMC10241225 DOI: 10.1016/j.neuroimage.2023.119931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/06/2023] Open
Abstract
Precise segmentation of subcortical structures from infant brain magnetic resonance (MR) images plays an essential role in studying early subcortical structural and functional developmental patterns and diagnosis of related brain disorders. However, due to the dynamic appearance changes, low tissue contrast, and tiny subcortical size in infant brain MR images, infant subcortical segmentation is a challenging task. In this paper, we propose a context-guided, attention-based, coarse-to-fine deep framework to precisely segment the infant subcortical structures. At the coarse stage, we aim to directly predict the signed distance maps (SDMs) from multi-modal intensity images, including T1w, T2w, and the ratio of T1w and T2w images, with an SDM-Unet, which can leverage the spatial context information, including the structural position information and the shape information of the target structure, to generate high-quality SDMs. At the fine stage, the predicted SDMs, which encode spatial-context information of each subcortical structure, are integrated with the multi-modal intensity images as the input to a multi-source and multi-path attention Unet (M2A-Unet) for achieving refined segmentation. Both the 3D spatial and channel attention blocks are added to guide the M2A-Unet to focus more on the important subregions and channels. We additionally incorporate the inner and outer subcortical boundaries as extra labels to help precisely estimate the ambiguous boundaries. We validate our method on an infant MR image dataset and on an unrelated neonatal MR image dataset. Compared to eleven state-of-the-art methods, the proposed framework consistently achieves higher segmentation accuracy in both qualitative and quantitative evaluations of infant MR images and also exhibits good generalizability in the neonatal dataset.
Collapse
Affiliation(s)
- Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ya Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Paquola C, Hong SJ. The Potential of Myelin-Sensitive Imaging: Redefining Spatiotemporal Patterns of Myeloarchitecture. Biol Psychiatry 2023; 93:442-454. [PMID: 36481065 DOI: 10.1016/j.biopsych.2022.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023]
Abstract
Recent advances in magnetic resonance imaging (MRI) have paved the way for approximation of myelin content in vivo. In this review, our main goal was to determine how to best capitalize on myelin-sensitive imaging. First, we briefly overview the theoretical and empirical basis for the myelin sensitivity of different MRI markers and, in doing so, highlight how multimodal imaging approaches are important for enhancing specificity to myelin. Then, we discuss recent studies that have probed the nonuniform distribution of myelin across cortical layers and along white matter tracts. These approaches, collectively known as myelin profiling, have provided detailed depictions of myeloarchitecture in both the postmortem and living human brain. Notably, MRI-based profiling studies have recently focused on investigating whether it can capture interindividual variability in myelin characteristics as well as trajectories across the lifespan. Finally, another line of recent evidence emphasizes the contribution of region-specific myelination to large-scale organization, demonstrating the impact of myelination on global brain networks. In conclusion, we suggest that combining well-validated MRI markers with profiling techniques holds strong potential to elucidate individual differences in myeloarchitecture, which has important implications for understanding brain function and disease.
Collapse
Affiliation(s)
- Casey Paquola
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea; Center for the Developing Brain, Child Mind Institute, New York, New York; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
19
|
Oishi H, Takemura H, Amano K. Macromolecular tissue volume mapping of lateral geniculate nucleus subdivisions in living human brains. Neuroimage 2023; 265:119777. [PMID: 36462730 DOI: 10.1016/j.neuroimage.2022.119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The lateral geniculate nucleus (LGN) is a key thalamic nucleus in the visual system, which has an important function in relaying retinal visual input to the visual cortex. The human LGN is composed mainly of magnocellular (M) and parvocellular (P) subdivisions, each of which has different stimulus selectivity in neural response properties. Previous studies have discussed the potential relationship between LGN subdivisions and visual disorders based on psychophysical data on specific types of visual stimuli. However, these relationships remain speculative because non-invasive measurements of these subdivisions are difficult due to the small size of the LGN. Here we propose a method to identify these subdivisions by combining two structural MR measures: high-resolution proton-density weighted images and macromolecular tissue volume (MTV) maps. We defined the M and P subdivisions based on MTV fraction data and tested the validity of the definition by (1) comparing the data with that from human histological studies, (2) comparing the data with functional magnetic resonance imaging measurements on stimulus selectivity, and (3) analyzing the test-retest reliability. The findings demonstrated that the spatial organization of the M and P subdivisions was consistent across subjects and in line with LGN subdivisions observed in human histological data. Moreover, the difference in stimulus selectivity between the subdivisions identified using MTV was consistent with previous physiology literature. The definition of the subdivisions based on MTV was shown to be robust over measurements taken on different days. These results suggest that MTV mapping is a promising approach for evaluating the tissue properties of LGN subdivisions in living humans. This method potentially will enable neuroscientific and clinical hypotheses about the human LGN subdivisions to be tested.
Collapse
Affiliation(s)
- Hiroki Oishi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, United States.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan.
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
20
|
Fernandez-Alvarez M, Atienza M, Cantero JL. Effects of non-modifiable risk factors of Alzheimer's disease on intracortical myelin content. Alzheimers Res Ther 2022; 14:202. [PMID: 36587227 PMCID: PMC9805254 DOI: 10.1186/s13195-022-01152-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Non-modifiable risk factors of Alzheimer's disease (AD) have lifelong effects on cortical integrity that could be mitigated if identified at early stages. However, it remains unknown whether cortical microstructure is affected in older individuals with non-modifiable AD risk factors and whether altered cortical tissue integrity produces abnormalities in brain functional networks in this AD-risk population. METHODS Using relative T1w/T2w (rT1w/T2w) ratio maps, we have compared tissue integrity of normal-appearing cortical GM between controls and cognitively normal older adults with either APOE4 (N = 50), with a first-degree family history (FH) of AD (N = 52), or with the co-occurrence of both AD risk factors (APOE4+FH) (N = 35). Additionally, individuals with only one risk factor (APOE4 or FH) were combined into one group (N = 102) and compared with controls. The same number of controls matched in age, sex, and years of education was employed for each of these comparisons. Group differences in resting state functional connectivity (rs-FC) patterns were also investigated, using as FC seeds those cortical regions showing significant changes in rT1w/T2w ratios. RESULTS Overall, individuals with non-modifiable AD risk factors exhibited significant variations in rT1w/T2w ratios compared to controls, being APOE4 and APOE4+FH at opposite ends of a continuum. The co-occurrence of APOE4 and FH was further accompanied by altered patterns of rs-FC. CONCLUSIONS These findings may have practical implications for early detection of cortical abnormalities in older populations with APOE4 and/or FH of AD and open new avenues to monitor changes in cortical tissue integrity associated with non-modifiable AD risk factors.
Collapse
Affiliation(s)
- Marina Fernandez-Alvarez
- grid.15449.3d0000 0001 2200 2355Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain ,grid.418264.d0000 0004 1762 4012CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- grid.15449.3d0000 0001 2200 2355Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain ,grid.418264.d0000 0004 1762 4012CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jose L. Cantero
- grid.15449.3d0000 0001 2200 2355Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain ,grid.418264.d0000 0004 1762 4012CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
21
|
Berman S, Drori E, Mezer AA. Spatial profiles provide sensitive MRI measures of the midbrain micro- and macrostructure. Neuroimage 2022; 264:119660. [PMID: 36220534 DOI: 10.1016/j.neuroimage.2022.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.
Collapse
Affiliation(s)
- Shai Berman
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel; Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, United States.
| | - Elior Drori
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
22
|
Sui YV, Masurkar AV, Rusinek H, Reisberg B, Lazar M. Cortical myelin profile variations in healthy aging brain: A T1w/T2w ratio study. Neuroimage 2022; 264:119743. [PMID: 36368498 PMCID: PMC9904172 DOI: 10.1016/j.neuroimage.2022.119743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Demyelination is observed in both healthy aging and age-related neurodegenerative disorders. While the significance of myelin within the cortex is well acknowledged, studies focused on intracortical demyelination and depth-specific structural alterations in normal aging are lacking. Using the recently available Human Connectome Project Aging dataset, we investigated intracortical myelin in a normal aging population using the T1w/T2w ratio. To capture the fine changes across cortical depths, we employed a surface-based approach by constructing cortical profiles traveling perpendicularly through the cortical ribbon and sampling T1w/T2w values. The curvatures of T1w/T2w cortical profiles may be influenced by differences in local myeloarchitecture and other tissue properties, which are known to vary across cortical regions. To quantify the shape of these profiles, we parametrized the level of curvature using a nonlinearity index (NLI) that measures the deviation of the profile from a straight line. We showed that NLI exhibited a steep decline in aging that was independent of local cortical thinning. Further examination of the profiles revealed that lower T1w/T2w near the gray-white matter boundary and superficial cortical depths were major contributors to the apparent NLI variations with age. These findings suggest that demyelination and changes in other T1w/T2w related tissue properties in normal aging may be depth-specific and highlight the potential of NLI as a unique marker of microstructural alterations within the cerebral cortex.
Collapse
Affiliation(s)
- Yu Veronica Sui
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA,Corresponding author. (Y.V. Sui)
| | - Arjun V. Masurkar
- Department of Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA,Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA,Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA,Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Barry Reisberg
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mariana Lazar
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA
| |
Collapse
|
23
|
Royer J, Rodríguez-Cruces R, Tavakol S, Larivière S, Herholz P, Li Q, Vos de Wael R, Paquola C, Benkarim O, Park BY, Lowe AJ, Margulies D, Smallwood J, Bernasconi A, Bernasconi N, Frauscher B, Bernhardt BC. An Open MRI Dataset For Multiscale Neuroscience. Sci Data 2022; 9:569. [PMID: 36109562 PMCID: PMC9477866 DOI: 10.1038/s41597-022-01682-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/24/2022] [Indexed: 12/17/2022] Open
Abstract
Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54 ± 5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from (i) resting-state functional imaging, (ii) diffusion tractography, (iii) microstructure covariance analysis, and (iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and function. MICA-MICs is available on the Canadian Open Neuroscience Platform data portal ( https://portal.conp.ca ) and the Open Science Framework ( https://osf.io/j532r/ ).
Collapse
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada.
- Analytical Neurophysiology (ANPHY) Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada.
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Peer Herholz
- NeuroDataScience - ORIGAMI lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Qiongling Li
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Alexander J Lowe
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Daniel Margulies
- Centre national de la recherche scientifique (CNRS), Institut du Cerveau et de la Moelle Épinière, Paris, France
| | | | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory (NOEL), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory (NOEL), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology (ANPHY) Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
24
|
Glasser MF, Coalson TS, Harms MP, Xu J, Baum GL, Autio JA, Auerbach EJ, Greve DN, Yacoub E, Van Essen DC, Bock NA, Hayashi T. Empirical transmit field bias correction of T1w/T2w myelin maps. Neuroimage 2022; 258:119360. [PMID: 35697132 PMCID: PMC9483036 DOI: 10.1016/j.neuroimage.2022.119360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
T1-weighted divided by T2-weighted (T1w/T2w) myelin maps were initially developed for neuroanatomical analyses such as identifying cortical areas, but they are increasingly used in statistical comparisons across individuals and groups with other variables of interest. Existing T1w/T2w myelin maps contain radiofrequency transmit field (B1+) biases, which may be correlated with these variables of interest, leading to potentially spurious results. Here we propose two empirical methods for correcting these transmit field biases using either explicit measures of the transmit field or alternatively a 'pseudo-transmit' approach that is highly correlated with the transmit field at 3T. We find that the resulting corrected T1w/T2w myelin maps are both better neuroanatomical measures (e.g., for use in cross-species comparisons), and more appropriate for statistical comparisons of relative T1w/T2w differences across individuals and groups (e.g., sex, age, or body-mass-index) within a consistently acquired study at 3T. We recommend that investigators who use the T1w/T2w approach for mapping cortical myelin use these B1+ transmit field corrected myelin maps going forward.
Collapse
Affiliation(s)
| | | | - Michael P Harms
- Psychiatry, Washington University Medical School, St. Louis, MO, United States
| | - Junqian Xu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Graham L Baum
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Joonas A Autio
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | | | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Takuya Hayashi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
25
|
Baum GL, Flournoy JC, Glasser MF, Harms MP, Mair P, Sanders AFP, Barch DM, Buckner RL, Bookheimer S, Dapretto M, Smith S, Thomas KM, Yacoub E, Van Essen DC, Somerville LH. Graded Variation in T1w/T2w Ratio during Adolescence: Measurement, Caveats, and Implications for Development of Cortical Myelin. J Neurosci 2022; 42:5681-5694. [PMID: 35705486 PMCID: PMC9302463 DOI: 10.1523/jneurosci.2380-21.2022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/07/2022] [Accepted: 06/04/2022] [Indexed: 01/22/2023] Open
Abstract
Adolescence is characterized by the maturation of cortical microstructure and connectivity supporting complex cognition and behavior. Axonal myelination influences brain connectivity during development by enhancing neural signaling speed and inhibiting plasticity. However, the maturational timing of cortical myelination during human adolescence remains poorly understood. Here, we take advantage of recent advances in high-resolution cortical T1w/T2w mapping methods, including principled correction of B1+ transmit field effects, using data from the Human Connectome Project in Development (HCP-D; N = 628, ages 8-21). We characterize microstructural changes relevant to myelination by estimating age-related differences in T1w/T2w throughout the cerebral neocortex from childhood to early adulthood. We apply Bayesian spline models and clustering analysis to demonstrate graded variation in age-dependent cortical T1w/T2w differences that are correlated with the sensorimotor-association (S-A) axis of cortical organization reported by others. In sensorimotor areas, T1w/T2w ratio measures start at high levels at early ages, increase at a fast pace, and decelerate at later ages (18-21). In intermediate multimodal areas along the S-A axis, T1w/T2w starts at intermediate levels and increases linearly at an intermediate pace. In transmodal/paralimbic association areas, T1w/T2w starts at low levels and increases linearly at the slowest pace. These data provide evidence for graded variation of the T1w/T2w ratio along the S-A axis that may reflect cortical myelination changes during adolescence underlying the development of complex information processing and psychological functioning. We discuss the implications of these results as well as caveats in interpreting magnetic resonance imaging (MRI)-based estimates of myelination.SIGNIFICANCE STATEMENT Myelin is a lipid membrane that is essential to healthy brain function. Myelin wraps axons to increase neural signaling speed, enabling complex neuronal functioning underlying learning and cognition. Here, we characterize the developmental timing of myelination across the cerebral cortex during adolescence using a noninvasive proxy measure, T1w/T2w mapping. Our results provide new evidence demonstrating graded variation across the cortex in the timing of T1w/T2w changes during adolescence, with rapid T1w/T2w increases in lower-order sensory areas and gradual T1w/T2w increases in higher-order association areas. This spatial pattern of microstructural brain development closely parallels the sensorimotor-to-association axis of cortical organization and plasticity during ontogeny.
Collapse
Affiliation(s)
- Graham L Baum
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - John C Flournoy
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Matthew F Glasser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA, 63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Patrick Mair
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 63110
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA, MO 63130
| | - Randy L Buckner
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA, 90095
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA, 90095
| | - Stephen Smith
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
| | - Kathleen M Thomas
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA, 55455
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA, 55455
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Leah H Somerville
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| |
Collapse
|
26
|
Drori E, Berman S, Mezer AA. Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease. SCIENCE ADVANCES 2022; 8:eabm1971. [PMID: 35857492 PMCID: PMC9286505 DOI: 10.1126/sciadv.abm1971] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mapping structural spatial change (i.e., gradients) in the striatum is essential for understanding the function of the basal ganglia in both health and disease. We developed a method to identify and quantify gradients of microstructure in the single human brain in vivo. We found spatial gradients in the putamen and caudate nucleus of the striatum that were robust across individuals, clinical conditions, and datasets. By exploiting multiparametric quantitative MRI, we found distinct, spatially dependent, aging-related alterations in water content and iron concentration. Furthermore, we found cortico-striatal microstructural covariation, showing relations between striatal structural gradients and cortical hierarchy. In Parkinson's disease (PD) patients, we found abnormal gradients in the putamen, revealing changes in the posterior putamen that explain patients' dopaminergic loss and motor dysfunction. Our work provides a noninvasive approach for studying the spatially varying, structure-function relationship in the striatum in vivo, in normal aging and PD.
Collapse
Affiliation(s)
- Elior Drori
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Berman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Boaventura M, Sastre-Garriga J, Garcia-Vidal A, Vidal-Jordana A, Quartana D, Carvajal R, Auger C, Alberich M, Tintoré M, Rovira À, Montalban X, Pareto D. T1/T2-weighted ratio in multiple sclerosis: A longitudinal study with clinical associations. Neuroimage Clin 2022; 34:102967. [PMID: 35202997 PMCID: PMC8866895 DOI: 10.1016/j.nicl.2022.102967] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Alterations in T1-w/T2-w ratio precede lesion formation in CIS patients. Longitudinal decreases in T1-w/T2-w were associated with disease activity in CIS. Lower T1-w/T2-w was associated with longer disease duration and higher EDSS in MS.
Background T1w/T2-w ratio has been proposed as a clinically feasible MRI biomarker to assess tissue integrity in multiple sclerosis. However, no data is available in the earliest stages of the disease and longitudinal studies analysing clinical associations are scarce. Objective To describe longitudinal changes in T1-w/T2-w in patients with clinically isolated syndrome (CIS) and multiple sclerosis, and to investigate their clinical associations. Methods T1-w/T2-w images were generated and the mean value obtained in the corresponding lesion, normal-appearing grey (NAGM) and white matter (NAWM) masks. By co-registering baseline to follow-up MRI, evolved lesions were assessed; and by placing the mask of new lesions to the baseline study, the pre-lesional tissue integrity was measured. Results We included 171 CIS patients and 22 established multiple sclerosis patients. In CIS, evolved lesions showed significant T1-w/T2-w increases compared to baseline (+7.6%, P < 0.001). T1-w/T2-w values in new lesions were lower than in pre-lesional tissue (-28.2%, P < 0.001), and pre-lesional tissue was already lower than baseline NAWM (-7.8%, P < 0.001). In CIS at baseline, higher NAGM T1-w/T2-w was associated with multiple sclerosis diagnosis, and longitudinal decreases in NAGM and NAWM T1-w/T2-w were associated with disease activity. In established multiple sclerosis, T1-w/T2-w was inversely correlated with clinical disability and disease duration. Conclusion A decrease in T1-w/T2-w ratio precedes lesion formation. In CIS, higher T1-w/T2-w was associated with multiple sclerosis diagnosis. In established multiple sclerosis, lower T1-w/T2-w values were associated with clinical disability. The possible differential impact of chronic inflammation, iron deposition and demyelination should be considered to interpret these findings.
Collapse
Affiliation(s)
- Mateus Boaventura
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Aran Garcia-Vidal
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Angela Vidal-Jordana
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Davide Quartana
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - René Carvajal
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Manel Alberich
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mar Tintoré
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
28
|
Langensee L, Rumetshofer T, Behjat H, Novén M, Li P, Mårtensson J. T1w/T2w Ratio and Cognition in 9-to-11-Year-Old Children. Brain Sci 2022; 12:599. [PMID: 35624986 PMCID: PMC9139105 DOI: 10.3390/brainsci12050599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Childhood is a period of extensive cortical and neural development. Among other things, axons in the brain gradually become more myelinated, promoting the propagation of electrical signals between different parts of the brain, which in turn may facilitate skill development. Myelin is difficult to assess in vivo, and measurement techniques are only just beginning to make their way into standard imaging protocols in human cognitive neuroscience. An approach that has been proposed as an indirect measure of cortical myelin is the T1w/T2w ratio, a contrast that is based on the intensities of two standard structural magnetic resonance images. Although not initially intended as such, researchers have recently started to use the T1w/T2w contrast for between-subject comparisons of cortical data with various behavioral and cognitive indices. As a complement to these earlier findings, we computed individual cortical T1w/T2w maps using data from the Adolescent Brain Cognitive Development study (N = 960; 449 females; aged 8.9 to 11.0 years) and related the T1w/T2w maps to indices of cognitive ability; in contrast to previous work, we did not find significant relationships between T1w/T2w values and cognitive performance after correcting for multiple testing. These findings reinforce existent skepticism about the applicability of T1w/T2w ratio for inter-individual comparisons.
Collapse
Affiliation(s)
- Lara Langensee
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| | - Theodor Rumetshofer
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| | - Hamid Behjat
- Faculty of Engineering, Department of Biomedical Engineering, Lund University, 22100 Lund, Sweden;
| | - Mikael Novén
- Faculty of Science, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ping Li
- Faculty of Humanities, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
| | - Johan Mårtensson
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| |
Collapse
|
29
|
Boshkovski T, Cohen‐Adad J, Misic B, Arnulf I, Corvol J, Vidailhet M, Lehéricy S, Stikov N, Mancini M. The Myelin-Weighted Connectome in Parkinson's Disease. Mov Disord 2022; 37:724-733. [PMID: 34936123 PMCID: PMC9303520 DOI: 10.1002/mds.28891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Even though Parkinson's disease (PD) is typically viewed as largely affecting gray matter, there is growing evidence that there are also structural changes in the white matter. Traditional connectomics methods that study PD may not be specific to underlying microstructural changes, such as myelin loss. OBJECTIVE The primary objective of this study is to investigate the PD-induced changes in myelin content in the connections emerging from the basal ganglia and the brainstem. For the weighting of the connectome, we used the longitudinal relaxation rate as a biologically grounded myelin-sensitive metric. METHODS We computed the myelin-weighted connectome in 35 healthy control subjects and 81 patients with PD. We used partial least squares to highlight the differences between patients with PD and healthy control subjects. Then, a ring analysis was performed on selected brainstem and subcortical regions to evaluate each node's potential role as an epicenter for disease propagation. Then, we used behavioral partial least squares to relate the myelin alterations with clinical scores. RESULTS Most connections (~80%) emerging from the basal ganglia showed a reduced myelin content. The connections emerging from potential epicentral nodes (substantia nigra, nucleus basalis of Meynert, amygdala, hippocampus, and midbrain) showed significant decrease in the longitudinal relaxation rate (P < 0.05). This effect was not seen for the medulla and the pons. CONCLUSIONS The myelin-weighted connectome was able to identify alteration of the myelin content in PD in basal ganglia connections. This could provide a different view on the importance of myelination in neurodegeneration and disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Mila – Quebec AI InstituteMontréalQuebecCanada
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontréalQuebecCanada
| | | | - Isabelle Arnulf
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Jean‐Christophe Corvol
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Marie Vidailhet
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Stéphane Lehéricy
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Montreal Heart InstituteMontréalQuebecCanada
| | - Matteo Mancini
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
30
|
Rovira À, Pareto D. T1/T2-weighted ratio is a surrogate marker of demyelination in multiple sclerosis - Commentary. Mult Scler 2022; 28:357-358. [PMID: 35067066 DOI: 10.1177/13524585211069363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Nerland S, Jørgensen KN, Nordhøy W, Maximov II, Bugge RAB, Westlye LT, Andreassen OA, Geier OM, Agartz I. Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods. Neuroimage 2021; 245:118709. [PMID: 34848300 DOI: 10.1016/j.neuroimage.2021.118709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites. METHODS We assessed a variety of processing methods for computing cortical T1w/T2w-ratio maps, including correction methods for nonlinear field inhomogeneities, local outliers, and partial volume effects as well as intensity normalisation. These were implemented in 33 processing pipelines which were applied to four test-retest datasets, with a total of 170 pairs of T1w and T2w images acquired on four different MRI scanners. We assessed processing pipelines across datasets in terms of their reproducibility of expected regional distributions of cortical myelin, lateral intensity biases, and test-retest reliability regionally and across the cortex. Regional distributions were compared both qualitatively with histology and quantitatively with two reference datasets, YA-BC and YA-B1+, from the Human Connectome Project. RESULTS Reproducibility of raw T1w/T2w-ratio distributions was overall high with the exception of one dataset. For this dataset, Spearman rank correlations increased from 0.27 to 0.70 after N3 bias correction relative to the YA-BC reference and from -0.04 to 0.66 after N4ITK bias correction relative to the YA-B1+ reference. Partial volume and outlier corrections had only marginal effects on the reproducibility of T1w/T2w-ratio maps and test-retest reliability. Before intensity normalisation, we found large coefficients of variation (CVs) and low intraclass correlation coefficients (ICCs), with total whole-cortex CV of 10.13% and whole-cortex ICC of 0.58 for the raw T1w/T2w-ratio. Intensity normalisation with WhiteStripe, RAVEL, and Z-Score improved total whole-cortex CVs to 5.91%, 5.68%, and 5.19% respectively, whereas Z-Score and Least Squares improved whole-cortex ICCs to 0.96 and 0.97 respectively. CONCLUSIONS In the presence of large intensity nonuniformities, bias field correction is necessary to achieve acceptable correspondence with known distributions of cortical myelin, but it can be detrimental in datasets with less intensity inhomogeneity. Intensity normalisation can improve test-retest reliability and inter-subject comparability. However, both bias field correction and intensity normalisation methods vary greatly in their efficacy and may affect the interpretation of results. The choice of T1w/T2w-ratio processing method must therefore be informed by both scanner and acquisition protocol as well as the given study objective. Our results highlight limitations of the T1w/T2w-ratio, but also suggest concrete ways to enhance its usefulness in future studies.
Collapse
Affiliation(s)
- Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wibeke Nordhøy
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Robin A B Bugge
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oliver M Geier
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Mendez Colmenares A, Voss MW, Fanning J, Salerno EA, Gothe NP, Thomas ML, McAuley E, Kramer AF, Burzynska AZ. White matter plasticity in healthy older adults: The effects of aerobic exercise. Neuroimage 2021; 239:118305. [PMID: 34174392 DOI: 10.1016/j.neuroimage.2021.118305] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
White matter deterioration is associated with cognitive impairment in healthy aging and Alzheimer's disease. It is critical to identify interventions that can slow down white matter deterioration. So far, clinical trials have failed to demonstrate the benefits of aerobic exercise on the adult white matter using diffusion Magnetic Resonance Imaging. Here, we report the effects of a 6-month aerobic walking and dance interventions (clinical trial NCT01472744) on white matter integrity in healthy older adults (n = 180, 60-79 years) measured by changes in the ratio of calibrated T1- to T2-weighted images (T1w/T2w). Specifically, the aerobic walking and social dance interventions resulted in positive changes in the T1w/T2w signal in late-myelinating regions, as compared to widespread decreases in the T1w/T2w signal in the active control. Notably, in the aerobic walking group, positive change in the T1w/T2w signal correlated with improved episodic memory performance. Lastly, intervention-induced increases in cardiorespiratory fitness did not correlate with change in the T1w/T2w signal. Together, our findings suggest that white matter regions that are vulnerable to aging retain some degree of plasticity that can be induced by aerobic exercise training. In addition, we provided evidence that the T1w/T2w signal may be a useful and broadly accessible measure for studying short-term within-person plasticity and deterioration in the adult human white matter.
Collapse
Affiliation(s)
- Andrea Mendez Colmenares
- Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, United States; Department of Psychology/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, United States
| | - Jason Fanning
- Department of Health and Exercise Sciences, Wake Forest University, Winston-Salem, NC, 27109, United States
| | - Elizabeth A Salerno
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, 63130, United States
| | - Neha P Gothe
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Michael L Thomas
- Department of Psychology/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Edward McAuley
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Arthur F Kramer
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Psychology, Northeastern University, Boston, MA, 02115, United States
| | - Agnieszka Z Burzynska
- Department of Psychology, Northeastern University, Boston, MA, 02115, United States.
| |
Collapse
|
33
|
The Myelin Content of the Human Precentral Hand Knob Reflects Interindividual Differences in Manual Motor Control at the Physiological and Behavioral Level. J Neurosci 2021; 41:3163-3179. [PMID: 33653698 PMCID: PMC8026359 DOI: 10.1523/jneurosci.0390-20.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
The primary motor cortex hand area (M1HAND) and adjacent dorsal premotor cortex (PMd) form the so-called motor hand knob in the precentral gyrus. M1HAND and PMd are critical for dexterous hand use and are densely interconnected via corticocortical axons, lacking a sharp demarcating border. In 24 young right-handed volunteers, we performed multimodal mapping to delineate the relationship between structure and function in the right motor hand knob. Quantitative structural magnetic resonance imaging (MRI) at 3 tesla yielded regional R1 maps as a proxy of cortical myelin content. Participants also underwent functional MRI (fMRI). We mapped task-related activation and temporal precision, while they performed a visuomotor synchronization task requiring visually cued abduction movements with the left index or little finger. We also performed sulcus-aligned transcranial magnetic stimulation of the motor hand knob to localize the optimal site (hotspot) for evoking a motor evoked potential (MEP) in two intrinsic hand muscles. Individual motor hotspot locations varied along the rostrocaudal axis. The more rostral the motor hotspot location in the precentral crown, the longer were corticomotor MEP latencies. “Hotspot rostrality” was associated with the regional myelin content in the precentral hand knob. Cortical myelin content also correlated positively with task-related activation of the precentral crown and temporal precision during the visuomotor synchronization task. Together, our results suggest a link among cortical myelination, the spatial cortical representation, and temporal precision of finger movements. We hypothesize that the myelination of cortical axons facilitates neuronal integration in PMd and M1HAND and, hereby, promotes the precise timing of movements. SIGNIFICANCE STATEMENT Here we used magnetic resonance imaging and transcranial magnetic stimulation of the precentral motor hand knob to test for a link among cortical myelin content, functional corticomotor representations, and manual motor control. A higher myelin content of the precentral motor hand knob was associated with more rostral corticomotor presentations, with stronger task-related activation and a higher precision of movement timing during a visuomotor synchronization task. We propose that a high precentral myelin content enables fast and precise neuronal integration in M1 (primary motor cortex) and dorsal premotor cortex, resulting in higher temporal precision during dexterous hand use. Our results identify the degree of myelination as an important structural feature of the neocortex that is tightly linked to the function and behavior supported by the cortical area.
Collapse
|
34
|
Qiu Y, She S, Zhang S, Wu F, Liang Q, Peng Y, Yuan H, Ning Y, Wu H, Huang R. Cortical myelin content mediates differences in affective temperaments. J Affect Disord 2021; 282:1263-1271. [PMID: 33601705 DOI: 10.1016/j.jad.2021.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Accepted: 01/09/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Affective temperaments are regarded as subclinical forms and precursors of mental disorders. It may serve as candidates to facilitate the diagnosis and prediction of mental disorders. Cortical myelination likely characterizes the neurodevelopment and the evolution of cognitive functions and reflects brain functional demand. However, little is known about the relationship between affective temperaments and myelin plasticity. This study aims to analyze the association between the affective temperaments and cortical myelin content (CMC) in human brain. METHODS We measured affective temperaments using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire (TEMPS-A) on 106 healthy adults and used the ratio of T1- and T2-weighted images as the proxy for CMC. Using the unsupervised k-means clustering algorithm, we classified the cortical gray matter into heavily, intermediately, and lightly myelinated regions. The correlation between affective temperaments and CMC was calculated separately for different myelinated regions. RESULTS Hyperthymic temperament correlated negatively with CMC in the heavily myelinated (right postcentral gyrus and bilateral precentral gyrus) and lightly myelinated (bilateral frontal and lateral temporal) regions. Cyclothymic temperament showed a downward parabola-like correlation with CMC across the heavily, intermediately, and lightly myel0inated areas of the bilateral parietal-temporal regions. LIMITATIONS The analysis was constrained to cortical regions. The results were obtained from healthy subjects and we did not acquired data from patients of affective disorder, which may compromise the generalizability of the present findings. CONCLUSION The findings suggest that hyperthymic and cyclothymic temperaments have a CMC basis in extensive brain regions.
Collapse
Affiliation(s)
- Yidan Qiu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Shufei Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Qunjun Liang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yongjun Peng
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Haishan Yuan
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
35
|
Overlooked Tertiary Sulci Serve as a Meso-Scale Link between Microstructural and Functional Properties of Human Lateral Prefrontal Cortex. J Neurosci 2021; 41:2229-2244. [PMID: 33478989 DOI: 10.1523/jneurosci.2362-20.2021] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding the relationship between neuroanatomy and function in portions of cortex that perform functions largely specific to humans such as lateral prefrontal cortex (LPFC) is of major interest in systems and cognitive neuroscience. When considering neuroanatomical-functional relationships in LPFC, shallow indentations in cortex known as tertiary sulci have been largely unexplored. Here, by implementing a multimodal approach and manually defining 936 neuroanatomical structures in 72 hemispheres (in both males and females), we show that a subset of these overlooked tertiary sulci serve as a meso-scale link between microstructural (myelin content) and functional (network connectivity) properties of human LPFC in individual participants. For example, the posterior middle frontal sulcus (pmfs) is a tertiary sulcus with three components that differ in their myelin content, resting-state connectivity profiles, and engagement across meta-analyses of 83 cognitive tasks. Further, generating microstructural profiles of myelin content across cortical depths for each pmfs component and the surrounding middle frontal gyrus (MFG) shows that both gyral and sulcal components of the MFG have greater myelin content in deeper compared with superficial layers and that the myelin content in superficial layers of the gyral components is greater than sulcal components. These findings support a classic, yet largely unconsidered theory that tertiary sulci may serve as landmarks in association cortices, as well as a modern cognitive neuroscience theory proposing a functional hierarchy in LPFC. As there is a growing need for computational tools that automatically define tertiary sulci throughout cortex, we share pmfs probabilistic sulcal maps with the field.SIGNIFICANCE STATEMENT Lateral prefrontal cortex (LPFC) is critical for functions that are thought to be specific to humans compared with other mammals. However, relationships between fine-scale neuroanatomical structures largely specific to hominoid cortex and functional properties of LPFC remain elusive. Here, we show that these structures, which have been largely unexplored throughout history, surprisingly serve as markers for anatomical and functional organization in human LPFC. These findings have theoretical, methodological, developmental, and evolutionary implications for improved understanding of neuroanatomical-functional relationships not only in LPFC, but also in association cortices more broadly. Finally, these findings ignite new questions regarding how morphological features of these neglected neuroanatomical structures contribute to functions of association cortices that are critical for human-specific aspects of cognition.
Collapse
|
36
|
Baranger DAA, Halchenko YO, Satz S, Ragozzino R, Iyengar S, Swartz HA, Manelis A. Aberrant levels of cortical myelin distinguish individuals with depressive disorders from healthy controls. NEUROIMAGE: CLINICAL 2021; 32:102790. [PMID: 34455188 PMCID: PMC8406024 DOI: 10.1016/j.nicl.2021.102790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/05/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
The association between depressive disorders and measures reflecting myelin content is underexplored, despite growing evidence of associations with white matter tract integrity. We characterized the T1w/T2w ratio using the Glasser atlas in 39 UD and 47 HC participants (ages = 19-44, 75% female). A logistic elastic net regularized regression with nested cross-validation and a subsequent linear discriminant analysis conducted on held-out samples were used to select brain regions and classify patients vs. healthy controls (HC). True-label model performance was compared against permuted-label model performance. The T1w/T2w ratio distinguished patients from HC with 68% accuracy (p < 0.001; sensitivity = 63.8%, specificity = 71.5%). Brain regions contributing to this classification performance were located in the orbitofrontal cortex, anterior cingulate, extended visual, and auditory cortices, and showed statistically significant differences in the T1w/T2w ratio for patients vs. HC. As the T1w/T2w ratio is thought to characterize cortical myelin, patterns of cortical myelin in these regions may be a biomarker distinguishing individuals with depressive disorders from HC.
Collapse
Affiliation(s)
- David A A Baranger
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Skye Satz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel Ragozzino
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Holly A Swartz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
van der Weijden CWJ, García DV, Borra RJH, Thurner P, Meilof JF, van Laar PJ, Dierckx RAJO, Gutmann IW, de Vries EFJ. Myelin quantification with MRI: A systematic review of accuracy and reproducibility. Neuroimage 2020; 226:117561. [PMID: 33189927 DOI: 10.1016/j.neuroimage.2020.117561] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Currently, multiple sclerosis is treated with anti-inflammatory therapies, but these treatments lack efficacy in progressive disease. New treatment strategies aim to repair myelin damage and efficacy evaluation of such new therapies would benefit from validated myelin imaging techniques. Several MRI methods for quantification of myelin density are available now. This systematic review aims to analyse the performance of these MRI methods. METHODS Studies comparing myelin quantification by MRI with histology, the current gold standard, or assessing reproducibility were retrieved from PubMed/MEDLINE and Embase (until December 2019). Included studies assessed both myelin histology and MRI quantitatively. Correlation or variance measurements were extracted from the studies. Non-parametric tests were used to analyse differences in study methodologies. RESULTS The search yielded 1348 unique articles. Twenty-two animal studies and 13 human studies correlated myelin MRI with histology. Eighteen clinical studies analysed the reproducibility. Overall bias risk was low or unclear. All MRI methods performed comparably, with a mean correlation between MRI and histology of R2=0.54 (SD=0.30) for animal studies, and R2=0.54 (SD=0.18) for human studies. Reproducibility for the MRI methods was good (ICC=0.75-0.93, R2=0.90-0.98, COV=1.3-27%), except for MTR (ICC=0.05-0.51). CONCLUSIONS Overall, MRI-based myelin imaging methods show a fairly good correlation with histology and a good reproducibility. However, the amount of validation data is too limited and the variability in performance between studies is too large to select the optimal MRI method for myelin quantification yet.
Collapse
Affiliation(s)
- Chris W J van der Weijden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ronald J H Borra
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Patrick Thurner
- Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090 Wien, Austria.
| | - Jan F Meilof
- Multiple Sclerosis Center Noord Nederland, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Peter-Jan van Laar
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Radiology, Zorggroep Twente, Zilvermeeuw 1, 7609 PP Almelo, the Netherlands.
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ingomar W Gutmann
- Physics of Functional Material, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
38
|
Haast RAM, Lau JC, Ivanov D, Menon RS, Uludağ K, Khan AR. Effects of MP2RAGE B 1+ sensitivity on inter-site T 1 reproducibility and hippocampal morphometry at 7T. Neuroimage 2020; 224:117373. [PMID: 32949709 DOI: 10.1016/j.neuroimage.2020.117373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Most neuroanatomical studies are based on T1-weighted MR images, whose intensity profiles are not solely determined by the tissue's longitudinal relaxation times (T1), but also affected by varying non-T1 contributions, hampering data reproducibility. In contrast, quantitative imaging using the MP2RAGE sequence, for example, allows direct characterization of the brain based on the tissue property of interest. Combined with 7 Tesla (7T) MRI, this offers unique opportunities to obtain robust high-resolution brain data characterized by a high reproducibility, sensitivity and specificity. However, specific MP2RAGE parameter choices - e.g., to emphasize intracortical myelin-dependent contrast variations - can substantially impact image quality and cortical analyses through remnants of B1+-related intensity variations, as illustrated in our previous work. To follow up on this: we (1) validate this protocol effect using a dataset acquired with a particularly B1+ insensitive set of MP2RAGE parameters combined with parallel transmission excitation; and (2) extend our analyses to evaluate the effects on hippocampal morphometry. The latter remained unexplored initially, but can provide important insights related to generalizability and reproducibility of neurodegenerative research using 7T MRI. We confirm that B1+ inhomogeneities have a considerably variable effect on cortical T1 estimates, as well as on hippocampal morphometry depending on the MP2RAGE setup. While T1 differed substantially across datasets initially, we show the inter-site T1 comparability improves after correcting for the spatially varying B1+ field using a separately acquired Sa2RAGE B1+ map. Finally, removal of B1+ residuals affects hippocampal volumetry and boundary definitions, particularly near structures characterized by strong intensity changes (e.g. cerebral spinal fluid). Taken together, we show that the choice of MP2RAGE parameters can impact T1 comparability across sites and present evidence that hippocampal segmentation results are modulated by B1+ inhomogeneities. This calls for careful (1) consideration of sequence parameters when setting acquisition protocols, as well as (2) acquisition of a B1+ map to correct MP2RAGE data for potential B1+ variations to allow comparison across datasets.
Collapse
Affiliation(s)
- Roy A M Haast
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada.
| | - Jonathan C Lau
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Brain and Mind Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Kâmil Uludağ
- IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea; Department of Biomedical Engineering, N Center, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea; Techna Institute and Koerner Scientist in MR Imaging, University Health Network, 100 College St, Toronto, ON M5G 1L5, Canada
| | - Ali R Khan
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Brain and Mind Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
39
|
Myeloarchitecture gradients in the human insula: Histological underpinnings and association to intrinsic functional connectivity. Neuroimage 2020; 216:116859. [DOI: 10.1016/j.neuroimage.2020.116859] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
|
40
|
Kurzawski JW, Mikellidou K, Morrone MC, Pestilli F. The visual white matter connecting human area prostriata and the thalamus is retinotopically organized. Brain Struct Funct 2020; 225:1839-1853. [PMID: 32535840 PMCID: PMC7321903 DOI: 10.1007/s00429-020-02096-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
The human visual system is capable of processing visual information from fovea to the far peripheral visual field. Recent fMRI studies have shown a full and detailed retinotopic map in area prostriata, located ventro-dorsally and anterior to the calcarine sulcus along the parieto-occipital sulcus with strong preference for peripheral and wide-field stimulation. Here, we report the anatomical pattern of white matter connections between area prostriata and the thalamus encompassing the lateral geniculate nucleus (LGN). To this end, we developed and utilized an automated pipeline comprising a series of Apps that run openly on the cloud computing platform brainlife.io to analyse 139 subjects of the Human Connectome Project (HCP). We observe a continuous and extended bundle of white matter fibers from which two subcomponents can be extracted: one passing ventrally parallel to the optic radiations (OR) and another passing dorsally circumventing the lateral ventricle. Interestingly, the loop travelling dorsally connects the thalamus with the central visual field representation of prostriata located anteriorly, while the other loop travelling more ventrally connects the LGN with the more peripheral visual field representation located posteriorly. We then analyse an additional cohort of 10 HCP subjects using a manual plane extraction method outside brainlife.io to study the relationship between the two extracted white matter subcomponents and eccentricity, myelin and cortical thickness gradients within prostriata. Our results are consistent with a retinotopic segregation recently demonstrated in the OR, connecting the LGN and V1 in humans and reveal for the first time a retinotopic segregation regarding the trajectory of a fiber bundle between the thalamus and an associative visual area.
Collapse
Affiliation(s)
| | - Kyriaki Mikellidou
- Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Maria Concetta Morrone
- IRCCS Stella Maris, Viale del Tirreno, 331, Pisa, Italy.,Department of Translational Research On New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Program in Neuroscience and Program in Cognitive Science, Indiana University, 1101 E 10th Street, Bloomington, IN, 47401, USA.
| |
Collapse
|
41
|
Wang Y, van Gelderen P, de Zwart JA, Duyn JH. B 0-field dependence of MRI T 1 relaxation in human brain. Neuroimage 2020; 213:116700. [PMID: 32145438 PMCID: PMC7165058 DOI: 10.1016/j.neuroimage.2020.116700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/31/2022] Open
Abstract
Tissue longitudinal relaxation characterized by recovery time T1 or rate R1 is a fundamental MRI contrast mechanism that is increasingly being used to study the brain's myelination patterns in both health and disease. Nevertheless, the quantitative relationship between T1 and myelination, and its dependence on B0 field strength, is still not well known. It has been theorized that in much of brain tissue, T1 field-dependence is driven by that of macromolecular protons (MP) through a mechanism called magnetization transfer (MT). Despite the explanatory power of this theory and substantial support from in-vitro experiments at low fields (<3 T), in-vivo evidence across clinically relevant field strengths is lacking. In this study, T1-weighted MRI was acquired in a group of eight healthy volunteers at four clinically relevant field strengths (0.55, 1.5, 3 and 7 T) using the same pulse sequence at a single site, and jointly analyzed based on the two-pool model of MT. MP fraction and free-water pool T1 were obtained in several brain structures at 3 and 7 T, which allowed distinguishing between contributions from macromolecular content and iron to tissue T1. Based on this, the T1 of MP in white matter, indirectly determined by assuming a field independent T1 of free water, was shown to increase approximately linearly with B0. This study advances our understanding of the T1 contrast mechanism and its relation to brain myelin content across the wide range of currently available MRI strengths, and it has the potential to inform design of T1 mapping methods for improved reproducibility in the human brain.
Collapse
Affiliation(s)
- Yicun Wang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jacco A de Zwart
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|