1
|
Zandi A, Hosseinirad S, Kashani Zadeh H, Tavakolian K, Cho BK, Vasefi F, Kim MS, Tavakolian P. A systematic review of multi-mode analytics for enhanced plant stress evaluation. FRONTIERS IN PLANT SCIENCE 2025; 16:1545025. [PMID: 40370362 PMCID: PMC12076076 DOI: 10.3389/fpls.2025.1545025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/27/2025] [Indexed: 05/16/2025]
Abstract
Introduction Detecting plant stress is a critical challenge in agriculture, where early intervention is essential to enhance crop resilience and maximize yield. Conventional single-mode approaches often fail to capture the complex interplay of plant health stressors. Methods This review integrates findings from recent advancements in Multi-Mode Analytics (MMA), which employs spectral imaging, image-based phenotyping, and adaptive computational techniques. It integrates machine learning, data fusion, and hyperspectral technologies to improve analytical accuracy and efficiency. Results MMA approaches have shown substantial improvements in the accuracy and reliability of early interventions. They outperform traditional methods by effectively capturing complex interactions among various abiotic stressors. Recent research highlights the benefits of MMA in enhancing predictive capabilities, which facilitates the development of timely and effective intervention strategies to boost agricultural productivity. Discussion The advantages of MMA over conventional single-mode techniques are significant, particularly in the detection and management of plant stress in challenging environments. Integrating advanced analytical methods supports precision agriculture by enabling proactive responses to stress conditions. These innovations are pivotal for enhancing food security in terrestrial and space agriculture, ensuring sustainability and resilience in food production systems.
Collapse
Affiliation(s)
- Abdolrahim Zandi
- Biomedical Engineering Department, College of Engineering and Mines, University of North Dakota, Grand Forks, ND, United States
| | | | - Hossein Kashani Zadeh
- Mechanical Engineering Department, University of North Dakota, Grand Forks, ND, United States
| | - Kouhyar Tavakolian
- Biomedical Engineering Department, College of Engineering and Mines, University of North Dakota, Grand Forks, ND, United States
| | - Byoung-Kwan Cho
- Department of Smart Agricultural Systems, Chungnam National University, Daejeon, Republic of Korea
| | | | - Moon S. Kim
- U.S Department of Agriculture/Agricultural Research Service (USDA/ARS) Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Pantea Tavakolian
- Biomedical Engineering Department, College of Engineering and Mines, University of North Dakota, Grand Forks, ND, United States
- Mechanical Engineering Department, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
2
|
Koroleva M, Blinova S, Shvartsev A, Kurochkin V, Alekseev Y. Molecular genetic detection and differentiation of Xanthomonas oryzae pv. oryzicola, bacterial leaf streak agents of rice. Vavilovskii Zhurnal Genet Selektsii 2022; 26:544-552. [PMID: 36313829 PMCID: PMC9556313 DOI: 10.18699/vjgb-22-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
The genus Xanthomonas comprises phytopathogenic bacteria which infect about 400 host species, including a wide variety of economically important plants. Xanthomonas oryzae pv. oryzicola (Fang et al., 1957) Swings et al., 1990 is the causal agent of bacterial leaf streak (BLS) being one of the most destructive bacterial diseases of rice. BLS symptoms are very similar to those of bacterial blight caused by closely related Xanthomonas oryzae pv. oryzae. X. o. pv. oryzae and X. o. pv. oryzicola and often occur in rice f ields simultaneously, so separate leaves may show symptoms of both diseases. The quarantine status and high severity of the pathogen require a highly eff icient, fast and precise diagnostic method. We have developed an assay for Xanthomonas oryzae pv. oryzicola detection using real-time polymerase chain reaction (qPCR) and PCR amplicon sequencing. The DNA samples of X. o. pv. oryzae and X. o. pv. oryzicola were obtained from the collection of CIRM-CFBR (France). To evaluate the analytical sensitivity of the assay, a vector construct based on the pAL2-T plasmid was created through the insertion of X. o. pv. oryzicola target fragment (290 bp). Primers and a probe for qPCR were selected for the hpa1 gene site. They allowed identifying all the strains the sequences of which had been loaded in the GenBank NCBI Nucleotide database before November 11, 2021. The SeqX.o.all sequencing primers were selected for the hrp gene cluster sequence, namely for the nucleotide sequence encoding the Hpa1 protein, the sequencing of which allows for eff icient differentiation of X. oryzae species. The analytical specif icity of the system was tested using the DNAs of 53 closely related and accompanying microorganisms and comprised 100 % with no false-positive or false-negative results registered. The system's analytical sensitivity was not less than 25 copies per PCR reaction. Its eff icacy has been conf irmed using f ive different qPCR detection systems from different manufacturers, so it can be recommended for diagnostic and screening studies.
Collapse
Affiliation(s)
| | - S.A. Blinova
- Limited Liability Company “Syntol”, Moscow, RussiaAll-Russian Research Institute of Agricultural Biotechnology, Moscow, Russia
| | | | - V.E. Kurochkin
- Institute for Analytical Instrumentation of the Russian Academy of Science, St. Petersburg, Russia
| | - Ya.I. Alekseev
- Limited Liability Company “Syntol”, Moscow, RussiaInstitute for Analytical Instrumentation of the Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
3
|
A-to-I mRNA Editing in a Ferric Siderophore Receptor Improves Competition for Iron in Xanthomonas oryzae pv. oryzicola. Microbiol Spectr 2021; 9:e0157121. [PMID: 34704802 PMCID: PMC8549721 DOI: 10.1128/spectrum.01571-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential element for the growth and survival of pathogenic bacteria; however, it is not fully understood how bacteria sense and respond to iron deficiency or excess. In this study, we show that xfeA in Xanthomonas oryzae pv. oryzicola senses extracytoplasmic iron and changes the hydrogen bonding network of ligand channel domains by adenosine-to-inosine (A-to-I) RNA editing. The frequency of A-to-I RNA editing during iron-deficient conditions increased by 76.87%, which facilitated the passage of iron through the XfeA outer membrane channel. When bacteria were subjected to high iron concentrations, the percentage of A-to-I editing in xfeA decreased, which reduced iron transport via XfeA. Furthermore, A-to-I RNA editing increased expression of multiple genes in the chemotaxis pathway, including methyl-accepting chemotaxis proteins (MCPs) that sense concentrations of exogenous ferrienterobactin (Fe-Ent) at the cytoplasmic membrane. A-to-I RNA editing helps X. oryzae pv. oryzicola move toward an iron-rich environment and supports our contention that editing in xfeA facilitates entry of a ferric siderophore. Overall, our results reveal a new signaling mechanism that bacteria use to adjust to iron concentrations. IMPORTANCE Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by the adenosine deaminase RNA-specific family of enzymes, is a frequent posttranscriptional modification in metazoans. Research on A-to-I editing in bacteria is limited, and the importance of this editing is underestimated. In this study, we show that bacteria may use A-to-I editing as an alternative strategy to promote uptake of metabolic iron, and this form of editing can quickly and precisely modify RNA and subsequent protein sequences similar to an "on/off" switch. Thus, bacteria have the capacity to use a rapid switch-like mechanism to facilitate iron uptake and improve their competitiveness.
Collapse
|
4
|
Wu Y, Wang S, Nie W, Wang P, Fu L, Ahmad I, Zhu B, Chen G. A key antisense sRNA modulates the oxidative stress response and virulence in Xanthomonas oryzae pv. oryzicola. PLoS Pathog 2021; 17:e1009762. [PMID: 34297775 PMCID: PMC8336823 DOI: 10.1371/journal.ppat.1009762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/04/2021] [Accepted: 06/27/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogens integrate multiple environmental signals to navigate the host and control the expression of virulence genes. In this process, small regulatory noncoding RNAs (sRNAs) may function in gene expression as post-transcriptional regulators. In this study, the sRNA Xonc3711 functioned in the response of the rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), to oxidative stress. Xonc3711 repressed production of the DNA-binding protein Xoc_3982 by binding to the xoc_3982 mRNA within the coding region. Mutational analysis showed that regulation required an antisense interaction between Xonc3711 and xoc_3982 mRNA, and RNase E was needed for degradation of the xoc_3982 transcript. Deletion of Xonc3711 resulted in a lower tolerance to oxidative stress due to the repression of flagella-associated genes and reduced biofilm formation. Furthermore, ChIP-seq and electrophoretic mobility shift assays showed that Xoc_3982 repressed the transcription of effector xopC2, which contributes to virulence in Xoc BLS256. This study describes how sRNA Xonc3711 modulates multiple traits in Xoc via signals perceived from the external environment. Small, stable RNA species perform diverse functions in both prokaryotes and eukaryotes. In this study, the sRNA Xonc3711 decreased the production of DNA-binding protein Xoc_3982 in the bacterium Xanthomonas oryzae pv. oryzicola (Xoc) by base pairing with the xoc_3982 transcript. When Xonc3711 was mutated, Xoc was impaired in its ability to form flagella and produce biofilms, which reduced Xoc tolerance to oxidative stress. We also discovered that the DNA-binding protein Xoc_3982 represses the expression of xopC2, which encodes an effector protein, and reduces its expression. Our results show that Xonc3711 modulates and integrates multiple systems in Xoc to protect cells from oxidative damage.
Collapse
Affiliation(s)
- Yan Wu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luoyi Fu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|
5
|
A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment. Nat Commun 2021; 12:2085. [PMID: 33837194 PMCID: PMC8035401 DOI: 10.1038/s41467-021-22317-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen’s adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160’s targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis. Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. Here, Kinoshita-Daitoku et al. show that a small non-coding RNA of H. pylori regulates bacterial adaptation to the stomach environment and bacterial oncoprotein production.
Collapse
|
6
|
Nie W, Wang S, He R, Xu Q, Wang P, Wu Y, Tian F, Yuan J, Zhu B, Chen G. A-to-I RNA editing in bacteria increases pathogenicity and tolerance to oxidative stress. PLoS Pathog 2020; 16:e1008740. [PMID: 32822429 PMCID: PMC7467310 DOI: 10.1371/journal.ppat.1008740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/02/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes; however, many features remain largely unexplored in prokaryotes. This study focuses on a serine-to-proline recoding event (S128P) that originated in the mRNA of fliC, which encodes a flagellar filament protein; the editing event was observed in RNA-seq samples exposed to oxidative stress. Using Sanger sequencing, we show that the S128P editing event is induced by H2O2. To investigate the in vivo interaction between RNAs and TadA, which is the principal enzyme for A-to-I editing, genome-wide RNA immunoprecipitation–coupled high-throughput sequencing (iRIP-Seq) analysis was performed using HA-tagged TadA from Xanthomonas oryzae pv. oryzicola. We found that TadA can bind to the mRNA of fliC and the binding motif is identical to that previously reported by Bar-Yaacov and colleagues. This editing event increased motility and enhanced tolerance to oxidative stress due to changes in flagellar filament structure, which was modelled in 3D and measured by TEM. The change in filament structure due to the S128P mutant increased biofilm formation, which was measured by the 3D laser scanning confocal microscopy. RNA-seq revealed that a gene cluster that contributes to siderophore biosynthesis and Fe3+ uptake was upregulated in S128P compared with WT. Based on intracellular levels of reactive oxygen species and an oxidative stress survival assay, we found that this gene cluster can contribute to the reduction of the Fenton reaction and increases biofilm formation and bacterial virulence. This oxidative stress response was also confirmed in Pseudomonas putida. Overall, our work demonstrates that A-to-I RNA editing plays a role in bacterial pathogenicity and adaptation to oxidative stress. Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes that has only been recently documented in bacteria. In this study, we use multiple ‘omic’ approaches to show that A-to-I RNA editing can occur in fliC, a flagellar filament protein. We show that TadA, which encodes adenosine deaminase, can directly bind to mRNA of target genes through recognition of a GACG motif. This editing event changes a single amino acid residue from serine to proline in FliC, resulting in a structural change in the flagellar filament. This posttranscriptional editing event contributes to virulence and increases tolerance to oxidative stress by enhancing biofilm formation. Our results provide insight into a new mechanism that bacterial pathogens use to adapt to oxidative stress, which can also increase virulence.
Collapse
Affiliation(s)
- Wenhan Nie
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|