1
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
2
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 PMCID: PMC11410020 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
3
|
Pimentel‐Coelho PM. Monocytes in neonatal stroke and hypoxic‐ischemic encephalopathy: Pathophysiological mechanisms and therapeutic possibilities. NEUROPROTECTION 2023; 1:66-79. [DOI: 10.1002/nep3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractNeonatal arterial ischemic stroke (NAIS) and neonatal hypoxic‐ischemic encephalopathy (HIE) are common causes of neurological impairments in infants, for which treatment options are very limited. NAIS and HIE induce an innate immune response that involves the recruitment of peripheral immune cells, including monocytes, into the brain. Monocytes and monocyte‐derived cells have the potential to contribute to both harmful and beneficial pathophysiological processes, such as neuroinflammation and brain repair, but their roles in NAIS and HIE remain poorly understood. Furthermore, recent evidence indicates that monocyte‐derived macrophages can persist in the brain for several months following NAIS and HIE in mice, with possible long‐lasting consequences that are still unknown. This review provides a comprehensive overview of the mechanisms of monocyte infiltration and their potential functions in the ischemic brain, focusing on HIE and NAIS. Therapeutic strategies targeting monocytes and the possibility of using monocytes for cell‐based therapies are also discussed.
Collapse
Affiliation(s)
- Pedro M. Pimentel‐Coelho
- Carlos Chagas Filho Biophysics Institute Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
4
|
Torabi S, Zarrabi M, Hossein-Khannazer N, Lotfinia M, Nouri M, Gramignoli R, Hassan M, Vosough M. Umbilical Cord Blood-Derived Monocytes as A Reliable Source of Functional Macrophages for Biomedical Research. CELL JOURNAL 2023; 25:524-535. [PMID: 37641414 PMCID: PMC10542205 DOI: 10.22074/cellj.2023.1990203.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Macrophages are multifunctional immune cells widely used in immunological research. While autologous macrophages have been widely used in several biomedical applications, allogeneic macrophages have also demonstrated similar or even superior therapeutic potential. The umbilical cord blood (UCB) is a well-described source of abundant allogenic monocytes and macrophages that is easy to collect and can be processed without invasive methods. Current monocyte isolation procedures frequently result in heterogenous cell products, with limited yields, activated cells, and high cost. This study outlines a simple isolation method that results in high yields and pure monocytes with the potential to differentiate into functional macrophages. MATERIALS AND METHODS In the experimental study, we describe a simple and efficient protocol to isolate highpurity monocytes. After collection of human UCB samples, we used a gradient-based procedure composed of three consecutive gradient steps: i. Hydroxyethyl starch-based erythrocytes sedimentation, followed by ii. Mononuclear cells (MNCs) isolation by Ficoll-Hypaque gradient, and iii. Separation of monocytes from lymphocytes by a slight hyperosmolar Percoll gradient (0.573 g/ml). Then the differentiation potential of isolated monocytes to pro- and antiinflammatory macrophages were evaluated in the presence of granulocyte colony-stimulating factor (GM-CSF) and macrophage CSF (M-CSF), respectively. The macrophages were functionally characterized as well. RESULTS A high yield of monocytes after isolation (25 to 50 million) with a high purity (>95%) could be obtained from every 100-150 ml UCB. Isolated monocytes were defined based on their phenotype and surface markers expression pattern. Moreover, they possess the ability to differentiate into pro- or anti-inflammatory macrophages with specific phenotypes, gene/surface protein markers, cytokine secretion patterns, T-cell interactions, and phagocytosis activity. CONCLUSION Here we describe a simple and reproducible procedure for isolation of pure monocytes from UCB, which could be utilized to provide functional macrophages as a reliable and feasible source of allogenic macrophages for biomedical research.
Collapse
Affiliation(s)
- Shukoofeh Torabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- R and D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoumeh Nouri
- R and D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden.
- Department of Pathology and Cancer Diagnostic, Karolinska University Hospital, 141 83 Stockholm, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Simhal AK, Carpenter KLH, Kurtzberg J, Song A, Tannenbaum A, Zhang L, Sapiro G, Dawson G. Changes in the geometry and robustness of diffusion tensor imaging networks: Secondary analysis from a randomized controlled trial of young autistic children receiving an umbilical cord blood infusion. Front Psychiatry 2022; 13:1026279. [PMID: 36353577 PMCID: PMC9637553 DOI: 10.3389/fpsyt.2022.1026279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
Diffusion tensor imaging (DTI) has been used as an outcome measure in clinical trials for several psychiatric disorders but has rarely been explored in autism clinical trials. This is despite a large body of research suggesting altered white matter structure in autistic individuals. The current study is a secondary analysis of changes in white matter connectivity from a double-blind placebo-control trial of a single intravenous cord blood infusion in 2-7-year-old autistic children (1). Both clinical assessments and DTI were collected at baseline and 6 months after infusion. This study used two measures of white matter connectivity: change in node-to-node connectivity as measured through DTI streamlines and a novel measure of feedback network connectivity, Ollivier-Ricci curvature (ORC). ORC is a network measure which considers both local and global connectivity to assess the robustness of any given pathway. Using both the streamline and ORC analyses, we found reorganization of white matter pathways in predominantly frontal and temporal brain networks in autistic children who received umbilical cord blood treatment versus those who received a placebo. By looking at changes in network robustness, this study examined not only the direct, physical changes in connectivity, but changes with respect to the whole brain network. Together, these results suggest the use of DTI and ORC should be further explored as a potential biomarker in future autism clinical trials. These results, however, should not be interpreted as evidence for the efficacy of cord blood for improving clinical outcomes in autism. This paper presents a secondary analysis using data from a clinical trial that was prospectively registered with ClinicalTrials.gov(NCT02847182).
Collapse
Affiliation(s)
- Anish K. Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kimberly L. H. Carpenter
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University Medical Center, Durham, NC, United States
| | - Allen Song
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Allen Tannenbaum
- Department of Computer Science, Stony Brook University, Stony Brook, NY, United States
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Lijia Zhang
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Computer Science, and Mathematics, Duke University, Durham, NC, United States
| | - Geraldine Dawson
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
6
|
Xi Y, Yue G, Gao S, Ju R, Wang Y. Human umbilical cord blood mononuclear cells transplantation for perinatal brain injury. Stem Cell Res Ther 2022; 13:458. [PMID: 36064459 PMCID: PMC9446746 DOI: 10.1186/s13287-022-03153-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 01/06/2023] Open
Abstract
Perinatal brain injury is a leading cause of death and disability in children. Hypoxic-ischemic encephalopathy in full term infants, and white matter injury in premature infants are most known brain injury in perinatal period. Human umbilical cord blood mononuclear cells contain hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, lymphocytes, monocytes, and so on. Human umbilical cord blood mononuclear cells have many biological functions, such as nerve and vascular regeneration, anti-apoptosis, anti-inflammation, and immune regulation. Human umbilical cord blood mononuclear cells transplantation has achieved significant efficacy and safety in animal and clinical trials for the treatment of perinatal brain injury. We will review human umbilical cord blood mononuclear cells transplantation for perinatal brain injury in this review.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Guang Yue
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shuqiang Gao
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yujia Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China. .,Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Cox CS, Juranek J, Kosmach S, Pedroza C, Thakur N, Dempsey A, Rennie K, Scott MC, Jackson M, Kumar A, Aertker B, Caplan H, Triolo F, Savitz SI. Autologous cellular therapy for cerebral palsy: a randomized, crossover trial. Brain Commun 2022; 4:fcac131. [PMID: 35702731 PMCID: PMC9188321 DOI: 10.1093/braincomms/fcac131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
We examined an autologous mononuclear-cell-therapy-based approach to treat cerebral palsy using autologous umbilical cord blood or bone-marrow-derived mononuclear cells. The primary objective was to determine if autologous cells are safe to administer in children with cerebral palsy. The secondary objectives were to determine if there was improvement in motor function of patients 12 months after infusion using the Gross Motor Function Measure and to evaluate impact of treatment on corticospinal tract microstructure as determined by radial diffusivity measurement. This Phase 1/2a trial was a randomized, blinded, placebo-controlled, crossover study in children aged 2-10 years of age with cerebral palsy enrolled between November 2013 and November 2016. Participants were randomized to 2:1 treatment:placebo. Treatment was either autologous bone-marrow-derived mononuclear cells or autologous umbilical cord blood. All participants who enrolled and completed their baseline visit planned to return for follow-up visits at 6 months, 12 months and 24 months after the baseline visit. At the 12-month post-treatment visit, participants who originally received the placebo received either bone-marrow-derived mononuclear cell or umbilical cord blood treatment. Twenty participants were included; 7 initially randomized to placebo, and 13 randomized to treatment. Five participants randomized to placebo received bone-marrow-derived mononuclear cells, and 2 received umbilical cord blood at the 12-month visit. None of the participants experienced adverse events related to the stem cell infusion. Cell infusion at the doses used in our study did not dramatically alter motor function. We observed concordant bilateral changes in radial diffusivity in 10 of 15 cases where each corticospinal tract could be reconstructed in each hemisphere. In 60% of these cases (6/10), concordant decreases in bilateral corticospinal tract radial diffusivity occurred post-treatment. In addition, 100% of unilateral corticospinal tract cases (3/3) exhibited decreased corticospinal tract radial diffusivity post-treatment. In our discordant cases (n = 5), directionality of changes in corticospinal tract radial diffusivity appeared to coincide with handedness. There was a significant improvement in corticospinal tract radial diffusivity that appears related to handedness. Connectivity strength increased in either or both pathways (corticio-striatal and thalamo-cortical) in each participant at 12 months post-treatment. These data suggest that both stem cell infusions are safe. There may be an improvement in myelination in some groups of patients that correlate with small improvements in the Gross Motor Function Measure scales. A larger autologous cord blood trial is impractical at current rates of blood banking. Either increased private banking or matched units would be required to perform a larger-scale trial.
Collapse
Affiliation(s)
- Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jenifer Juranek
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Steven Kosmach
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Claudia Pedroza
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Nivedita Thakur
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Allison Dempsey
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Kimberly Rennie
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Department of Neuropsychology, NeuroBehavioral Health, Milwaukee, WI, USA
| | - Michael C. Scott
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Margaret Jackson
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Akshita Kumar
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Benjamin Aertker
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Henry Caplan
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Sean I. Savitz
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
8
|
Zdolińska-Malinowska I, Boruczkowski D, Hołowaty D, Krajewski P, Snarski E. Rationale for the Use of Cord Blood in Hypoxic-Ischaemic Encephalopathy. Stem Cells Int 2022; 2022:9125460. [PMID: 35599846 PMCID: PMC9117076 DOI: 10.1155/2022/9125460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) is a severe complication of asphyxia at birth. Therapeutic hypothermia, the standard method for HIE prevention, is effective in only 50% of the cases. As the understanding of the immunological basis of these changes increases, experiments have begun with the use of cord blood (CB) because of its neuroprotective properties. Mechanisms for the neuroprotective effects of CB stem cells include antiapoptotic and anti-inflammatory actions, stimulation of angiogenesis, production of trophic factors, and mitochondrial donation. In several animal models of HIE, CB decreased oxidative stress, cell death markers, CD4+ T cell infiltration, and microglial activation; restored normal brain metabolic activity; promoted neurogenesis; improved myelination; and increased the proportion of mature oligodendrocytes, neuron numbers in the motor cortex and somatosensory cortex, and brain weight. These observations translate into motor strength, limb function, gait, and cognitive function and behaviour. In humans, the efficacy and safety of CB administration were reported in a few early clinical studies which confirmed the feasibility and safety of this intervention for up to 10 years. The results of these studies showed an improvement in the developmental outcomes over hypothermia. Two phase-2 clinical studies are ongoing under the United States regulations, namely one controlled study and one blinded study.
Collapse
Affiliation(s)
| | - Dariusz Boruczkowski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
| | - Dominika Hołowaty
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Paweł Krajewski
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Emilian Snarski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Astuti SW, Liem IK, Ramli Y. The Effect of Intravenously and Intra-arterially Delivered Human Umbilical Cord Blood Mononuclear Cell on Cortical Neurogenesis of Post-Ischemic Stroke Rat Brain. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Stroke is the second most cause of death in the world. There are several treatments but they often end up with disabilities. Recently, cell therapy has become a new hope as an alternative treatment as it could improve the patients neurological deficits and daily living activities. Cord blood mononuclear cells (CB-MNCs) are one of the cell therapies for post-ischemic neurogenesis by intravenous or intra-arterial administration; however, it is not clear which one is better.
AIM: This study aims to compare the effects of intra-arterial and intravenous administration of human CB-MNC on cortical neurogenesis of rat brain after ischemic stroke.
METHODS: Twenty-four rats were divided into four groups, that is, control, middle cerebral artery obstruction (MCAO) without treatment, MCAO with intra-arterial CB-MNC injection (MCAO-IA), and MCAO with intravenous CB-MNC injection (MCAO-IV). Two weeks after injection, all rats were sacrificed, the brain was harvested, histologically process and stained with hematoxylin eosin (HE) to determine cellular and tissue morphology changes, and immunohistochemical staining, anti-NeuN antibody to determine the number of cortical neurons. The HE showed that MCAO rat brain had gliosis and shrunken cells.
RESULTS: The results showed that MCAO-IA and MCAO-IV had fewer areas of gliosis and shrunken cells when compared to the MCAO group. The number of neurons also showed an increase. However, there was no difference between the MCAO-IA and MCAO-IV groups. It was concluded both of them could improve neurogenesis.
CONCLUSION: CB-MNC administration can be an alternative for stroke ischemic therapy because it is proven to increase neurogenesis and reduce gliosis areas. However, there was no difference in neurogenesis in the brain tissue of mice injected with CB-MNC intravenously or intra-arterially.
Collapse
|
10
|
Sun JM, Case LE, Mikati MA, M Jasien J, McLaughlin C, Waters-Pick B, Worley G, Troy J, Kurtzberg J. Sibling umbilical cord blood infusion is safe in young children with cerebral palsy. Stem Cells Transl Med 2021; 10:1258-1265. [PMID: 34085782 PMCID: PMC8380440 DOI: 10.1002/sctm.20-0470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Preclinical and early phase clinical studies suggest that an appropriately dosed umbilical cord blood (CB) infusion has the potential to help improve motor function in young children with cerebral palsy (CP). As many children with CP do not have their own CB available, use of allogeneic cells would extend access to this potentially beneficial therapy to more children. In this phase I, open‐label study, 15 children, aged 1 to 6 years, with moderate to severe spastic CP were treated with a single intravenous infusion of allogeneic human leukocyte antigen (HLA) matched or partially matched sibling CB with a cell dose of ≥2.5 × 107 cells/kg based on the pre‐cryopreservation count (median infused cell dose, 3.3 × 107; range, 1.8‐5.2 × 107). There were a total of 49 adverse events (AEs) over a 2‐year time period, but there were no AEs related to the CB infusions. Specifically, there were no acute infusion reactions and no antibody formation against platelets, red blood cells, or donor‐specific HLA antigens. Donor cells were not detected in peripheral blood 6 months later. Six months after infusion, participants were assessed for response and experienced a mean ± SD increase of 4.7 ± 2.5 points on the Gross Motor Function Measure‐66 and 1 ± 2.9 points on the Peabody Gross Motor Quotient. Appropriately dosed, allogeneic partially or fully HLA‐matched sibling CB infusion is well tolerated and potentially beneficial in young children with CP.
Collapse
Affiliation(s)
- Jessica M Sun
- Marcus Center for Cellular Cures, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura E Case
- Department of Physical and Occupational Therapy, Duke University, Durham, North Carolina, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University, Durham, North Carolina, USA
| | - Joan M Jasien
- Division of Pediatric Neurology, Duke University, Durham, North Carolina, USA
| | - Colleen McLaughlin
- Marcus Center for Cellular Cures, Duke University Medical Center, Durham, North Carolina, USA
| | - Barbara Waters-Pick
- Stem Cell Transplant Laboratory, Duke University, Durham, North Carolina, USA
| | - Gordon Worley
- Division of Pediatric Neurology, Duke University, Durham, North Carolina, USA
| | - Jesse Troy
- Marcus Center for Cellular Cures, Duke University Medical Center, Durham, North Carolina, USA.,Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
11
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
12
|
Dawson G, Kurtzberg J. Reply. J Pediatr 2021; 230:272. [PMID: 33271189 DOI: 10.1016/j.jpeds.2020.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Geraldine Dawson
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, North Carolina
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
13
|
Qiu H, Qian T, Wu T, Wang X, Zhu C, Chen C, Wang L. Umbilical cord blood cells for the treatment of preterm white matter injury: Potential effects and treatment options. J Neurosci Res 2020; 99:778-792. [PMID: 33207392 DOI: 10.1002/jnr.24751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022]
Abstract
Preterm birth is a global public health problem. A large number of preterm infants survive with preterm white matter injury (PWMI), which leads to neurological deficits, and has multifaceted etiology, clinical course, monitoring, and outcomes. The principal upstream insults leading to PWMI initiation are hypoxia-ischemia and infection and/or inflammation and the key target cells are late oligodendrocyte precursor cells. Current PWMI treatments are mainly supportive, and thus have little effect in terms of protecting the immature brain or repairing injury to improve long-term outcomes. Umbilical cord blood (UCB) cells comprise abundant immunomodulatory and stem cells, which have the potential to reduce brain injury, mainly due to anti-inflammatory and immunomodulatory mechanisms, and also through their release of neurotrophic or growth factors to promote endogenous neurogenesis. In this review, we briefly summarize PWMI pathogenesis and pathophysiology, and the specific properties of different cell types in UCB. We further explore the potential mechanism by which UCB can be used to treat PWMI, and discuss the advantages of and potential issues related to UCB cell therapy. Finally, we suggest potential future studies of UCB cell therapy in preterm infants.
Collapse
Affiliation(s)
- Han Qiu
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Tianyang Qian
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Tong Wu
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoyang Wang
- Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Chao Chen
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Haney MJ, Zhao Y, Fay J, Duhyeong H, Wang M, Wang H, Li Z, Lee YZ, Karuppan MK, El-Hage N, Kabanov AV, Batrakova EV. Genetically modified macrophages accomplish targeted gene delivery to the inflamed brain in transgenic Parkin Q311X(A) mice: importance of administration routes. Sci Rep 2020; 10:11818. [PMID: 32678262 PMCID: PMC7366622 DOI: 10.1038/s41598-020-68874-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-based drug delivery systems have generated an increasing interest in recent years. We previously demonstrated that systemically administered macrophages deliver therapeutics to CNS, including glial cell line-derived neurotrophic factor (GDNF), and produce potent effects in Parkinson’s disease (PD) mouse models. Herein, we report fundamental changes in biodistribution and brain bioavailability of macrophage-based formulations upon different routes of administration: intravenous, intraperitoneal, or intrathecal injections. The brain accumulation of adoptively transferred macrophages was evaluated by various imaging methods in transgenic Parkin Q311(X)A mice and compared with those in healthy wild type littermates. Neuroinflammation manifested in PD mice warranted targeting macrophages to the brain for each route of administration. The maximum amount of cell-carriers in the brain, up to 8.1% ID/g, was recorded followed a single intrathecal injection. GDNF-transfected macrophages administered through intrathecal route provided significant increases of GDNF levels in different brain sub-regions, including midbrain, cerebellum, frontal cortex, and pons. No significant offsite toxicity of the cell-based formulations in mouse brain and peripheral organs was observed. Overall, intrathecal injection appeared to be the optimal administration route for genetically modified macrophages, which accomplished targeted gene delivery, and significant expression of reporter and therapeutic genes in the brain.
Collapse
Affiliation(s)
- Matthew J Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - James Fay
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Hwang Duhyeong
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Mengzhe Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zibo Li
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yueh Z Lee
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohan K Karuppan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Elena V Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA.
| |
Collapse
|
15
|
Kurtzberg J. The view for cord blood is "cup half full" not "cup half empty". Stem Cells Transl Med 2020; 9:1118-1120. [PMID: 32619325 PMCID: PMC7519759 DOI: 10.1002/sctm.20-0260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Affiliation(s)
- Joanne Kurtzberg
- Marcus Center for Cellular Cures at Duke, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
16
|
Dawson G, Sun JM, Baker J, Carpenter K, Compton S, Deaver M, Franz L, Heilbron N, Herold B, Horrigan J, Howard J, Kosinski A, Major S, Murias M, Page K, Prasad VK, Sabatos-DeVito M, Sanfilippo F, Sikich L, Simmons R, Song A, Vermeer S, Waters-Pick B, Troy J, Kurtzberg J. A Phase II Randomized Clinical Trial of the Safety and Efficacy of Intravenous Umbilical Cord Blood Infusion for Treatment of Children with Autism Spectrum Disorder. J Pediatr 2020; 222:164-173.e5. [PMID: 32444220 DOI: 10.1016/j.jpeds.2020.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate whether umbilical cord blood (CB) infusion is safe and associated with improved social and communication abilities in children with autism spectrum disorder (ASD). STUDY DESIGN This prospective, randomized, placebo-controlled, double-blind study included 180 children with ASD, aged 2-7 years, who received a single intravenous autologous (n = 56) or allogeneic (n = 63) CB infusion vs placebo (n = 61) and were evaluated at 6 months postinfusion. RESULTS CB infusion was safe and well tolerated. Analysis of the entire sample showed no evidence that CB was associated with improvements in the primary outcome, social communication (Vineland Adaptive Behavior Scales-3 [VABS-3] Socialization Domain), or the secondary outcomes, autism symptoms (Pervasive Developmental Disorder Behavior Inventory) and vocabulary (Expressive One-Word Picture Vocabulary Test). There was also no overall evidence of differential effects by type of CB infused. In a subanalysis of children without intellectual disability (ID), allogeneic, but not autologous, CB was associated with improvement in a larger percentage of children on the clinician-rated Clinical Global Impression-Improvement scale, but the OR for improvement was not significant. Children without ID treated with CB showed significant improvements in communication skills (VABS-3 Communication Domain), and exploratory measures including attention to toys and sustained attention (eye-tracking) and increased alpha and beta electroencephalographic power. CONCLUSIONS Overall, a single infusion of CB was not associated with improved socialization skills or reduced autism symptoms. More research is warranted to determine whether CB infusion is an effective treatment for some children with ASD.
Collapse
Affiliation(s)
- Geraldine Dawson
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC; Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC.
| | - Jessica M Sun
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Jennifer Baker
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Kimberly Carpenter
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Scott Compton
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Megan Deaver
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Lauren Franz
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Nicole Heilbron
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Brianna Herold
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Joseph Horrigan
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Jill Howard
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Andrzej Kosinski
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Samantha Major
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Michael Murias
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Kristin Page
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Vinod K Prasad
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Maura Sabatos-DeVito
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | | | - Linmarie Sikich
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Ryan Simmons
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Allen Song
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC; Duke Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC
| | - Saritha Vermeer
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, NC
| | - Barbara Waters-Pick
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Jesse Troy
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| |
Collapse
|
17
|
Allan DS. Using umbilical cord blood for regenerative therapy: Proof or promise? Stem Cells 2020; 38:590-595. [PMID: 31995251 DOI: 10.1002/stem.3150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/03/2023]
Abstract
The identification of nonhematopoietic progenitor cells in cord blood has spawned great interest in using cord blood cells for new indications in regenerative therapy. Many preclinical studies demonstrated improvement in reperfusion and markers of organ recovery using cord blood-derived cells in a range of animal models. Initial results heralded increasing clinical interest regarding the use of cord blood for regenerative therapy. Initial clinical studies were largely uncontrolled feasibility studies that were case series and reported on small numbers of patients. The emergence of controlled studies has been slower, although multiple controlled studies have been conducted in patients with cerebral palsy and type I diabetes. Heterogeneity in the cellular product, patients, study design, and the timing of outcome measurements remains barriers to meta-analysis and a clearer understanding of efficacy. Controlled studies of modest size have been reported for a range of additional conditions. The conduct of controlled clinical trials to evaluate potential new uses of cord blood for regenerative therapy remains essential. None of the indications studied to date can be regarded as proven. Moreover, consistency in outcome reporting in terms of the instruments used and the time points for assessment after therapy are needed, including longer follow-up of study participants. Frequent and careful evaluation of the evidence will allow cord blood banks, health care providers, and patients to assess potential new options in the use of cord blood for regenerative therapy.
Collapse
Affiliation(s)
- David S Allan
- Ottawa Hospital Research Institute, University of Ottawa and Canadian Blood Services, Ottawa, Canada
| |
Collapse
|