1
|
Alaklabi S, Maguire O, Pattnaik H, Zhang Y, Chow J, Wang J, Minderman H, Iyer R. Immune Cell Molecular Pharmacodynamics of Lanreotide in Relation to Treatment Response in Patients with Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2024; 16:3104. [PMID: 39272962 PMCID: PMC11394651 DOI: 10.3390/cancers16173104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The CLARINET trial led to the approval of lanreotide for the treatment of patients with gastroenteropancreatic neuroendocrine tumors (NETs). It is hypothesized that lanreotide regulates proliferation, hormone synthesis, and other cellular functions via binding to somatostatin receptors (SSTR1-5) present in NETs. However, our knowledge of how lanreotide affects the immune system is limited. In vitro studies have investigated functional immune response parameters with lanreotide treatment in healthy donor T cell subsets, encompassing the breadth of SSTR expression, apoptosis induction, cytokine production, and activity of transcription factor signaling pathways. In our study, we characterized in vitro immune mechanisms in healthy donor T cells in response to lanreotide. We also studied the in vivo effects by looking at differential gene expression pre- and post-lanreotide therapy in patients with NET. Immune-focused gene and protein expression profiling was performed on peripheral blood samples from 17 NET patients and correlated with clinical response. In vivo, lanreotide therapy showed reduced effects on wnt, T cell receptor (TCR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling in CD8+ T cells in responders compared to non-responders. Compared to non-responders, responders showed reduced effects on cytokine and chemokine signaling but greater effects on ubiquitination and proteasome degradation genes. Our results suggest significant lanreotide pharmacodynamic effects on immune function in vivo, which correlate with responses in NET patients. This is not evident from experimental in vitro settings.
Collapse
Affiliation(s)
- Sabah Alaklabi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Orla Maguire
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Harsha Pattnaik
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yali Zhang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jacky Chow
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Short-Interval, Low-Dose Peptide Receptor Radionuclide Therapy in Combination with PD-1 Checkpoint Immunotherapy Induces Remission in Immunocompromised Patients with Metastatic Merkel Cell Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14071466. [PMID: 35890361 PMCID: PMC9323617 DOI: 10.3390/pharmaceutics14071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer of the elderly, with high metastatic potential and poor prognosis. In particular, the primary resistance to immune checkpoint inhibitors (ICI) in metastatic (m)MCC patients represents a challenge not yet met by any efficient treatment modality. Herein, we describe a novel therapeutic concept with short-interval, low-dose 177Lutetium (Lu)-high affinity (HA)-DOTATATE [177Lu]Lu-HA-DOTATATE peptide receptor radionuclide therapy (SILD-PRRT) in combination with PD-1 ICI to induce remission in patients with ICI-resistant mMCC. We report on the initial refractory response of two immunocompromised mMCC patients to the PD-L1 inhibitor avelumab. After confirming the expression of somatostatin receptors (SSTR) on tumor cells by [68Ga]Ga-HA-DOTATATE-PET/CT (PET/CT), we employed low-dose PRRT (up to six treatments, mean activity 3.5 GBq per cycle) at 3–6 weeks intervals in combination with the PD-1 inhibitor pembrolizumab to restore responsiveness to ICI. This combination enabled the synergistic application of PD-1 checkpoint immunotherapy with low-dose PRRT at more frequent intervals, and was very well tolerated by both patients. PET/CTs demonstrated remarkable responses at all metastatic sites (lymph nodes, distant skin, and bones), which were maintained for 3.6 and 4.8 months, respectively. Both patients eventually succumbed with progressive disease after 7.7 and 8 months, respectively, from the start of treatment with SILD-PRRT and pembrolizumab. We demonstrate that SILD-PRRT in combination with pembrolizumab is safe and well-tolerated, even in elderly, immunocompromised mMCC patients. The restoration of clinical responses in ICI-refractory patients as proposed here could potentially be used not only for patients with mMCC, but many other cancer types currently treated with PD-1/PD-L1 inhibitors.
Collapse
|
3
|
Li G, Ma X, Jiang Y, Li W, Wang Y, Liu L, Sun C, Xiao S, Lan J, Kuang J, Wang G. Aqueous two-phase extraction of polysaccharides from Selaginella doederleinii and their bioactivity study. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Egal ESA, Jacenik D, Soares HP, Beswick EJ. Translational challenges in pancreatic neuroendocrine tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188640. [PMID: 34695532 PMCID: PMC10695297 DOI: 10.1016/j.bbcan.2021.188640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Pancreatic neuroendocrine tumors are rare types of pancreatic cancer formed from islet cells of pancreas. Clinical presentation of pancreatic neuroendocrine tumors depends on both tumor progression and hormone secretion status, which generate several complications in both diagnosis and treatment. Despite numerous strategies, treatment of patients with pancreatic neuroendocrine tumors still needs improvement. It is suggested that immune response modulation may be essential in the regulation of pancreatic neuroendocrine tumor progression and patient's symptomology. Accumulating evidence indicates that immunotherapy seems to be a promising treatment option for patients with pancreatic neuroendocrine tumors. Nevertheless, several challenges in pre-clinical and clinical studies are present. This review provides knowledge about microenvironment of pancreatic neuroendocrine tumors including significance of cytokine and chemokine as well as specific immune cell types. Additionally, in vitro and in vivo models of pancreatic neuroendocrine tumors and translational challenges are highlighted.
Collapse
Affiliation(s)
- Erika Said Abu Egal
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States
| | - Damian Jacenik
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States; Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, UT, Salt Lake City, United States; Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Heloisa Prado Soares
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, UT, Salt Lake City, United States.
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States
| |
Collapse
|
5
|
Mpilla GB, Uddin MH, Al-Hallak MN, Aboukameel A, Li Y, Kim SH, Beydoun R, Dyson G, Baloglu E, Senapedis WT, Landesman Y, Wagner KU, Viola NT, El-Rayes BF, Philip PA, Mohammad RM, Azmi AS. PAK4-NAMPT Dual Inhibition Sensitizes Pancreatic Neuroendocrine Tumors to Everolimus. Mol Cancer Ther 2021; 20:1836-1845. [PMID: 34253597 PMCID: PMC8492493 DOI: 10.1158/1535-7163.mct-20-1105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed β-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.
Collapse
Affiliation(s)
- Gabriel B Mpilla
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Md Hafiz Uddin
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Mohammed N Al-Hallak
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Amro Aboukameel
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Yiwei Li
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Steve H Kim
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Rafic Beydoun
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Gregory Dyson
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | | | - Kay-Uwe Wagner
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Nerissa T Viola
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | - Philip A Philip
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan.
| |
Collapse
|
6
|
Xu J. Current treatments and future potential of surufatinib in neuroendocrine tumors (NETs). Ther Adv Med Oncol 2021; 13:17588359211042689. [PMID: 34484432 PMCID: PMC8411625 DOI: 10.1177/17588359211042689] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine tumors (NETs) are rare, heterogeneous, often indolent tumors that predominantly originate in the lungs and gastrointestinal tract. An understanding of the biology and tumor microenvironment of NETs has led to the development of molecularly targeted treatment options including somatostatin analogs, tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors and peptide receptor radionuclide therapy. Although increases in progression-free survival have been demonstrated, most currently approved NET therapies are limited by the development of tumor resistance. Surufatinib (HMPL-012, previously known as sulfatinib) is a new, oral, small-molecule tyrosine kinase inhibitor that potently inhibits vascular endothelial growth-factor receptor 1-3, fibroblast growth-factor receptor 1, and colony-stimulating-factor-1 receptor. This unique combination of molecular activities inhibits tumor angiogenesis, regulates tumor-immune evasion, and may decrease tumor resistance. Surufatinib demonstrated statistically significant, clinically meaningful antitumor activity, including tumor shrinkage, in two phase III studies recently completed in China in advanced pancreatic NETs and advanced extrapancreatic NETs. The safety profile of surufatinib in neuroendocrine tumors studies was consistent with previous surufatinib clinical studies. In an ongoing study in United States (US) patients with NETs of pancreatic origin and NETs of extrapancreatic origin previously treated with everolimus or sunitinib, surufatinib has also demonstrated promising efficacy. Furthermore, the pharmacokinetic and safety profile of surufatinib in US patients is similar to data collected in studies done in China. These positive phase III results support the efficacy of surufatinib in patients with advanced, progressive, well-differentiated NETs regardless of tumor origin.
Collapse
Affiliation(s)
- Jianming Xu
- Department of Gastrointestinal Oncology, The
Fifth Medical Center, Chinese PLA General Hospital, No. 8 East Street,
Fengtai District, Beijing 100071, China
| |
Collapse
|
7
|
Krug S, Mordhorst JP, Moser F, Theuerkorn K, Ruffert C, Egidi M, Rinke A, Gress TM, Michl P. Correction: Interaction between somatostatin analogues and targeted therapies in neuroendocrine tumor cells. PLoS One 2020; 15:e0228905. [PMID: 32017803 PMCID: PMC6999902 DOI: 10.1371/journal.pone.0228905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|