1
|
Hu Y, Ou HJ, Wang HL, Zhou WJ. The role of LECT2 in kidney fibrosis progression and endoplasmic reticulum stress. Life Sci 2025; 375:123714. [PMID: 40398731 DOI: 10.1016/j.lfs.2025.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
AIMS Our previous studies showed that Leukocyte Cell-Derived Chemotaxin 2 (LECT2), as a ligand for Tie1, modulates vascular endothelial cell function, promoting hepatic fibrosis. These findings prompted an investigation into whether LECT2 effects kidney fibrosis. This study aimed to elucidate the role of LECT2 in kidney fibrosis and its regulation of C/EBP homologous protein (CHOP) expression. MATERIALS AND METHODS We utilized Lect2-KO mice, Lect2-2 A-Cre-Rosa26-LSL-tdTomato reporter mice, and EA.hy926 cells overexpressing LECT2 to establish models of kidney fibrosis and endoplasmic reticulum stress (ERS). The expression characteristics of LECT2 in fibrotic kidneys, its effects on CHOP expression, and the mechanisms by which LECT2 modulates kidney fibrosis were systematically investigated. KEY FINDINGS Lect2 expression was upregulated in clinical fibrotic kidney samples and mouse models of fibrotic kidneys. Lect2-KO mice demonstrated reduced fibrosis and less impairment of kidney function in a kidney fibrosis model. In Lect2-KO mice, expression of the ERS marker CHOP was increased, and vascular endothelial cells were activated to express CHOP earlier, reducing kidney function damage. Overexpression of LECT2 decreased apoptosis, promoted cell survival, and upregulated the expression of profibrotic factors through activation of the EGFR/AKT/PI3K pathway. Lect2 deficiency in fibrotic kidneys led to attenuated myofibroblast activation and reduced collagen deposition. SIGNIFICANCE The absence of LECT2 alleviates kidney fibrosis by inhibiting the EGFR/PI3K/AKT pathway, activating ERS, promoting partial endothelial cell apoptosis, and reducing the secretion of profibrotic factors. LECT2 emerges as a promising therapeutic target for kidney fibrosis, and its inhibition offers a potential strategy for CKD treatment.
Collapse
Affiliation(s)
- Yang Hu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hai-Jun Ou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong-Lei Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei-Jie Zhou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Division of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Kutlu T, Kaya U, Yurtal Z, Güvenç M, Özkan H, Etyemez M, Alakuş İ, Keçeli HH. Chronic changes developing in the hydronephrotic and contralateral kidneys during unilateral ureteral obstruction in rats. Mol Biol Rep 2025; 52:413. [PMID: 40261471 DOI: 10.1007/s11033-025-10486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Animal models of chronic kidney disease are important experimental tools used to validate new mechanisms and potential innovations, as well as to investigate therapeutic interventions before clinical trials in humans. This study aimed to determine the chronic changes occurring in the obstructed kidneys (OK) and the contralateral (CL) kidneys in unilateral ureteral obstruction (UUO) in rats. METHODS AND RESULTS In the study, three groups (n:6) were formed. It was observed that dilated tubules decreased at 28 days compared to 14 days, while mononuclear cell infiltration and fibrosis increased. In the CL kidneys, glutathione (GSH) was lower compared to the control group (CG) at 14 days; at 28 days, malondialdehyde (MDA) was elevated, and GSH and catalase (CAT) levels were reduced. Nuclear factor erythroid 2-related factor 2 (NRF-2) protein expression was lower in the OK compared to the CL kidneys at both 14 and 28 days. NRF-2 gene expression was lower in the OK only at 28 days compared to the CG. However, in the CL kidneys, NRF-2 gene expression was higher at both 14 and 28 days compared to the CG. Cyclooxygenase-2 (COX-2) protein levels showed a significant increase in both the OK and CL kidneys at 14 days. COX-2 gene expression increased in the OK at 14 days compared to the CG. BAX protein levels were lower in the OK at 28 days compared to both the CG and CL kidneys. BCL-2 protein levels were lower in the OK compared to the CL kidneys at both 14 and 28 days. CONCLUSION This study has identified changes in both the OK and CL kidneys, providing significant data for potential therapeutic, supportive, or protective research aimed at treating these kidneys.
Collapse
Affiliation(s)
- Tuncer Kutlu
- Faculty of Veterinary Medicine, Department of Pathology, Hatay Mustafa Kemal University, Hatay, 31300, Turkey.
| | - Ufuk Kaya
- Faculty of Veterinary Medicine, Department of Biostatistics, Hatay Mustafa Kemal University, Hatay, 31300, Turkey
| | - Ziya Yurtal
- Faculty of Veterinary Medicine, Department of Surgery, Hatay Mustafa Kemal University, Hatay, 31300, Turkey
| | - Mehmet Güvenç
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, 31300, Turkey
| | - Hüseyin Özkan
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Hatay, 31300, Turkey
| | - Muhammed Etyemez
- Faculty of Veterinary Medicine, Department of Physiology, Kastamonu University, Kastamonu, 37150, Turkey
| | - İbrahim Alakuş
- Faculty of Veterinary Medicine, Department of Surgery, Hatay Mustafa Kemal University, Hatay, 31300, Turkey
| | - Hasan Hüseyin Keçeli
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Hatay, 31300, Turkey
| |
Collapse
|
3
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
4
|
Zhang L, Mo X, Jiang Z, Mai W, Su H, Zhang Z, Ye K, Fu D, Zhao S, Shi C. Contralateral renal change in a unilateral ureteral obstruction rat model using intravoxel incoherent motion diffusion-weighted imaging. Ren Fail 2024; 46:2359642. [PMID: 38860328 PMCID: PMC11168327 DOI: 10.1080/0886022x.2024.2359642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES Most functional magnetic resonance research has primarily examined alterations in the affected kidney, often neglecting the contralateral kidney. Our study aims to investigate whether imaging parameters accurately depict changes in both the renal cortex and medulla in a unilateral ureteral obstruction rat model, thereby showcasing the utility of intravoxel incoherent motion (IVIM) in evaluating contralateral renal changes. METHODS Six rats underwent MR scans and were subsequently sacrificed for baseline histological examination. Following the induction of left ureteral obstruction, 48 rats were scanned, and the histopathological examinations were conducted on days 3, 7, 10, 14, 21, 28, 35, and 42. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudodiffusion (D*), and perfusion fraction (f) values were measured using IVIM. RESULTS On the 10th day of obstruction, both cortical and medullary ADC values differed significantly between the UUO10 group and the sham group (p < 0.01). The cortical D values showed statistically significant differences between UUO3 group and sham group (p < 0.01) but not among UUO groups at other time point. Additionally, the cortical and medullary f values were statistically significant between the UUO21 group and the sham group (p < 0.01). Especially, the cortical f values exhibited significant differences between the UUO21 group and the UUO groups with shorter obstruction time (at time point of 3, 7, 10, 14 day) (p < 0.01). CONCLUSIONS Significant hemodynamic alterations were observed in the contralateral kidney following renal obstruction. IVIM accurately captures changes in the unobstructed kidney. Particularly, the cortical f value exhibits the highest potential for assessing contralateral renal modifications.
Collapse
Affiliation(s)
- Lingtao Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xukai Mo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zijie Jiang
- Department of Medical Imaging Center, The Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Wenfeng Mai
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiwei Su
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhihua Zhang
- Department of Pediatric Surgery, Huizhou Central People’s Hospital, Huizhou, China
| | - Kunlin Ye
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dandan Fu
- Medical Imaging Center, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Shuangquan Zhao
- Medical Imaging Center, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Nan QY, Piao SG, Jin JZ, Chung BH, Yang CW, Li C. Pathogenesis and management of renal fibrosis induced by unilateral ureteral obstruction. Kidney Res Clin Pract 2024; 43:586-599. [PMID: 38325866 PMCID: PMC11467363 DOI: 10.23876/j.krcp.23.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 02/09/2024] Open
Abstract
Regardless of the underlying etiology, renal fibrosis is the final histological outcome of progressive kidney disease. Unilateral ureteral obstruction (UUO) is an ideal and reproducible experimental rodent model of renal fibrosis, which is characterized by tubulointerstitial inflammatory responses, accumulation of extracellular matrix, tubular dilatation and atrophy, and fibrosis. The magnitude of UUO-induced renal fibrosis is experimentally manipulated by the species chosen, animal age, and the severity and duration of the obstruction, while relief of the obstruction allows the animal to recover from fibrosis. The pathogenesis of renal fibrosis is complex and multifactorial and is orchestrated by activation of renin-angiotensin system (RAS), oxidative stress, inflammatory response, transforming growth factor beta 1-Smad pathway, activated myofibroblasts, cell death (apoptosis, autophagy, ferroptosis, and necroptosis), destruction of intracellular organelles, and signaling pathway. The current therapeutic approaches have limited efficacy. Inhibition of RAS and use of antioxidants and antidiabetic drugs, such as inhibitors of sodium-glucose cotransporter 2 and dipeptidyl peptidase-4, have recently gained attention as therapeutic strategies to prevent renal scarring. This literature review highlights the state of the art regarding the molecular mechanisms relevant to the management of renal fibrosis caused by UUO.
Collapse
Affiliation(s)
- Qi Yan Nan
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Department of Intensive Care Unit, Yanbian University Hospital, Yanji, China
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
6
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Calvert ND, Kirby A, Suchý M, Pallister P, Torrens AA, Burger D, Melkus G, Schieda N, Shuhendler AJ. Direct mapping of kidney function by DCE-MRI urography using a tetrazinanone organic radical contrast agent. Nat Commun 2023; 14:3965. [PMID: 37407664 DOI: 10.1038/s41467-023-39720-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are ongoing global health burdens. Glomerular filtration rate (GFR) is the gold standard measure of kidney function, with clinical estimates providing a global assessment of kidney health without spatial information of kidney- or region-specific dysfunction. The addition of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) to the anatomical imaging already performed would yield a 'one-stop-shop' for renal assessment in cases of suspected AKI and CKD. Towards urography by DCE-MRI, we evaluated a class of nitrogen-centered organic radicals known as verdazyls, which are extremely stable even in highly reducing environments. A glucose-modified verdazyl, glucoverdazyl, provided contrast limited to kidney and bladder, affording functional kidney evaluation in mouse models of unilateral ureteral obstruction (UUO) and folic acid-induced nephropathy (FAN). Imaging outcomes correlated with histology and hematology assessing kidney dysfunction, and glucoverdazyl clearance rates were found to be a reliable surrogate measure of GFR.
Collapse
Affiliation(s)
- Nicholas D Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Alexia Kirby
- Department of Biology, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Mojmír Suchý
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Peter Pallister
- Department of Chemistry, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Aidan A Torrens
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Dylan Burger
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Rd, Ottawa, Ontario, K1H 8L6, Canada
| | - Gerd Melkus
- Dept. Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, Ontario, K1H 8L6, Canada
- Dept. Radiology, University of Ottawa, 501 Smyth Rd, Ottawa, Ontario, K1H 8L6, Canada
| | - Nicola Schieda
- Dept. Radiology, University of Ottawa, 501 Smyth Rd, Ottawa, Ontario, K1H 8L6, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada.
- Department of Biology, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada.
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, Ontario, K1Y 4W7, Canada.
| |
Collapse
|
8
|
Lin DW, Hsu YC, Chang CC, Hsieh CC, Lin CL. Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. Int J Mol Sci 2023; 24:6053. [PMID: 37047024 PMCID: PMC10094034 DOI: 10.3390/ijms24076053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (C.-C.C.); (C.-C.H.)
| | - Ching-Chuan Hsieh
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (C.-C.C.); (C.-C.H.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
9
|
Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J, Scholze A. Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls. Antioxidants (Basel) 2022; 11:antiox11061112. [PMID: 35740009 PMCID: PMC9220138 DOI: 10.3390/antiox11061112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) protects the cell against oxidative damage. The Nrf2 system comprises a complex network that functions to ensure adequate responses to redox perturbations, but also metabolic demands and cellular stresses. It must be kept within a physiologic activity range. Oxidative stress and alterations in Nrf2-system activity are central for chronic-kidney-disease (CKD) progression and CKD-related morbidity. Activation of the Nrf2 system in CKD is in multiple ways related to inflammation, kidney fibrosis, and mitochondrial and metabolic effects. In human CKD, both endogenous Nrf2 activation and repression exist. The state of the Nrf2 system varies with the cause of kidney disease, comorbidities, stage of CKD, and severity of uremic toxin accumulation and inflammation. An earlier CKD stage, rapid progression of kidney disease, and inflammatory processes are associated with more robust Nrf2-system activation. Advanced CKD is associated with stronger Nrf2-system repression. Nrf2 activation is related to oxidative stress and moderate uremic toxin and nuclear factor kappa B (NF-κB) elevations. Nrf2 repression relates to high uremic toxin and NF-κB concentrations, and may be related to Kelch-like ECH-associated protein 1 (Keap1)-independent Nrf2 degradation. Furthermore, we review the effects of pharmacological Nrf2 activation by bardoxolone methyl, curcumin, and resveratrol in human CKD and outline strategies for how to adapt future Nrf2-targeted therapies to the requirements of patients with CKD.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|
10
|
Early Effects of Extracellular Vesicles Secreted by Adipose Tissue Mesenchymal Cells in Renal Ischemia Followed by Reperfusion: Mechanisms Rely on a Decrease in Mitochondrial Anion Superoxide Production. Int J Mol Sci 2022; 23:ijms23062906. [PMID: 35328327 PMCID: PMC8955255 DOI: 10.3390/ijms23062906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) caused by ischemia followed by reperfusion (I/R) is characterized by intense anion superoxide (O2•−) production and oxidative damage. We investigated whether extracellular vesicles secreted by adipose tissue mesenchymal cells (EVs) administered during reperfusion can suppress the exacerbated mitochondrial O2•− formation after I/R. We used Wistar rats subjected to bilateral renal arterial clamping (30 min) followed by 24 h of reperfusion. The animals received EVs (I/R + EVs group) or saline (I/R group) in the kidney subcapsular space. The third group consisted of false-operated rats (SHAM). Mitochondria were isolated from proximal tubule cells and used immediately. Amplex Red™ was used to measure mitochondrial O2•− formation and MitoTracker™ Orange to evaluate inner mitochondrial membrane potential (Δψ). In vitro studies were carried out on human renal proximal tubular cells (HK-2) co-cultured or not with EVs under hypoxic conditions. Administration of EVs restored O2•− formation to SHAM levels in all mitochondrial functional conditions. The gene expression of catalase and superoxide dismutase-1 remained unmodified; transcription of heme oxygenase-1 (HO-1) was upregulated. The co-cultures of HK-2 cells with EVs revealed an intense decrease in apoptosis. We conclude that the mechanisms by which EVs favor long-term recovery of renal structures and functions after I/R rely on a decrease of mitochondrial O2•− formation with the aid of the upregulated antioxidant HO-1/Nuclear factor erythroid 2-related factor 2 system, thus opening new vistas for the treatment of AKI.
Collapse
|
11
|
Jiménez-Uribe AP, Bellido B, Aparicio-Trejo OE, Tapia E, Sánchez-Lozada LG, Hernández-Santos JA, Fernández-Valverde F, Hernández-Cruz EY, Orozco-Ibarra M, Pedraza-Chaverri J. Temporal characterization of mitochondrial impairment in the unilateral ureteral obstruction model in rats. Free Radic Biol Med 2021; 172:358-371. [PMID: 34175439 DOI: 10.1016/j.freeradbiomed.2021.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Renal fibrosis is a well-known mechanism that favors chronic kidney disease (CKD) development in obstructive nephropathy, a significant pathology worldwide. Fibrosis induction involves several pathways, and although mitochondrial alterations have recently emerged as a critical factor that triggers renal damage in the obstructed kidney, the temporal mitochondrial alterations during the fibrotic induction remain unexplored. Therefore, in this work, we evaluated the time course of mitochondrial mass and bioenergetics alterations induced by a unilateral ureteral obstruction (UUO), a widely used model to study the mechanism involved in kidney fibrosis induction and progression. Our results show a marked reduction in mitochondrial oxidative phosphorylation (OXPHOS) in the obstructed kidney on days 7 to 28 of obstruction without significant mitochondrial coupling changes. Besides, we observed that mitochondrial mass was reduced, probably due to decreased biogenesis and mitophagy induction. OXPHOS impairment was associated with decreased mitochondrial biogenesis markers, the peroxisome proliferator-activated receptor γ co-activator-1alpha (PGC-1α), and nuclear respiratory factor 1 (NRF1); and also, with the induction of mitophagy in a PTEN-induced kinase 1 (PINK1) and Parkin independent way. It is concluded that the impairment of OXPHOS capacity may be explained by the reduction in mitochondrial biogenesis and the induction of mitophagy during fibrotic progression.
Collapse
Affiliation(s)
| | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | | | - Edilia Tapia
- Departmento de Patofisiología Cardio-renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departmento de Patofisiología Cardio-renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - José Antonio Hernández-Santos
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | | | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
12
|
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radic Biol Med 2021; 172:65-81. [PMID: 34077780 DOI: 10.1016/j.freeradbiomed.2021.05.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Unilateral ureteral obstruction (UUO) is an experimental rodent model that mimics renal fibrosis associated with obstructive nephropathy in an accelerated manner. After UUO, the activation of the renin-angiotensin system (RAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and mitochondrial dysfunction lead to reactive oxygen species (ROS) overproduction in the kidney. ROS are secondary messengers able to induce post-translational modifications (PTMs) in redox-sensitive proteins, which activate or deactivate signaling pathways. Therefore, in UUO, it has been proposed that ROS overproduction causes changes in said pathways promoting inflammation, oxidative stress, and apoptosis that contribute to fibrosis development. Furthermore, mitochondrial metabolism impairment has been associated with UUO, contributing to renal damage in this model. Although ROS production and oxidative stress have been studied in UUO, the development of renal fibrosis associated with redox signaling pathways has not been addressed. This review focuses on the current information about the activation and deactivation of signaling pathways sensitive to a redox state and their effect on mitochondrial metabolism in the fibrosis development in the UUO model.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Laboratorio F-225, Ciudad de México, 04510, Mexico.
| | - Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ariadna Jazmín Ortega-Lozano
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules 2021; 11:biom11081144. [PMID: 34439810 PMCID: PMC8391472 DOI: 10.3390/biom11081144] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.
Collapse
|
14
|
Prieto-Carrasco R, Silva-Palacios A, Rojas-Morales P, Aparicio-Trejo OE, Medina-Reyes EI, Hernández-Cruz EY, Sánchez-Garibay C, Salinas-Lara C, Pavón N, Roldán FJ, Zazueta C, Tapia E, Pedraza-Chaverri J. Unilateral Ureteral Obstruction for 28 Days in Rats Is Not Associated with Changes in Cardiac Function or Alterations in Mitochondrial Function. BIOLOGY 2021; 10:671. [PMID: 34356526 PMCID: PMC8301354 DOI: 10.3390/biology10070671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Our work evaluated cardiac function and mitochondrial bioenergetics parameters in hearts from male Wistar rats subjected to the UUO model during 28 days of progression. We measured markers of kidney damage and inflammation in plasma and renal fibrosis by histological analysis and Western blot. Cardiac function was evaluated by echocardiography and proteins involved in cardiac damage by Western blot. Oxygen consumption and transmembrane potential were monitored in cardiac mitochondria using high-resolution respirometry. We also determined the activity of ATP synthase and antioxidant enzymes such as glutathione peroxidase, glutathione reductase, and catalase. Our results show that, although renal dysfunction is established in animals subjected to ureteral obstruction, cardiac function is maintained along with mitochondrial function and antioxidant enzymes activity after 28 days of injury evolution. Our results suggest that renocardiac syndrome might develop but belatedly in obstruction-induced renal damage, opening the opportunity for treatment to prevent this condition.
Collapse
Affiliation(s)
- Rodrigo Prieto-Carrasco
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (A.S.-P.); (C.Z.)
| | - Pedro Rojas-Morales
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Estefany Ingrid Medina-Reyes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Estefani Yaquelin Hernández-Cruz
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Carlos Sánchez-Garibay
- Department of Neuropathology, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.S.-G.); (C.S.-L.)
| | - Citlaltepetl Salinas-Lara
- Department of Neuropathology, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.S.-G.); (C.S.-L.)
| | - Natalia Pavón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Francisco Javier Roldán
- Department of External Consultation, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (A.S.-P.); (C.Z.)
| | - Edilia Tapia
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| |
Collapse
|
15
|
Hoel A, Osman T, Hoel F, Elsaid H, Chen T, Landolt L, Babickova J, Tronstad KJ, Lorens JB, Gausdal G, Marti HP, Furriol J. Axl-inhibitor bemcentinib alleviates mitochondrial dysfunction in the unilateral ureter obstruction murine model. J Cell Mol Med 2021; 25:7407-7417. [PMID: 34219376 PMCID: PMC8335678 DOI: 10.1111/jcmm.16769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a progressive histological manifestation leading to chronic kidney disease (CKD) and associated with mitochondrial dysfunction. In previous work, we showed that Bemcentinib, an Axl receptor tyrosine kinase inhibitor, reduced fibrosis development. In this study, to investigate its effects on mitochondrial dysfunction in renal fibrosis, we analysed genome‐wide transcriptomics data from a unilateral ureter obstruction (UUO) murine model in the presence or absence of bemcentinib (n = 6 per group) and SHAM‐operated (n = 4) mice. Kidney ligation resulted in dysregulation of mitochondria‐related pathways, with a significant reduction in the expression of oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), citric acid cycle (TCA), response to reactive oxygen species and amino acid metabolism‐related genes. Bemcentinib treatment increased the expression of these genes. In contrast, AKT/PI3K signalling pathway genes were up‐regulated upon UUO, but bemcentinib largely inhibited their expression. At the functional level, ligation reduced mitochondrial biomass, which was increased upon bemcentinib treatment. Serum metabolomics analysis also showed a normalizing amino acid profile in UUO, compared with SHAM‐operated mice following bemcentinib treatment. Our data suggest that mitochondria and mitochondria‐related pathways are dramatically affected by UUO surgery and treatment with Axl‐inhibitor bemcentinib partially reverses these effects.
Collapse
Affiliation(s)
- August Hoel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hassan Elsaid
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tony Chen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - James B Lorens
- BerGenBio ASA, Bergen, Norway.,Department of Biomedicine, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | | | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Luzes R, Muzi-Filho H, Pereira-Acácio A, Crisóstomo T, Vieyra A. Angiotensin-(3-4) modulates the overweight- and undernutrition-induced ACE2 downregulation in renal proximal tubule cells: implications for COVID-19? EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: The renal lesions–including severe acute kidney injury–are severe outcomes in severe acute respiratory syndrome coronavirus 2 infections. There are no reports regarding the influence of the nutritional status on the severity and progress of these lesions. Ageing is also an important risk factor.
Methods: In the present study we compared the influence of overweight and undernutrition on the levels of renal angiotensin converting enzymes 1 and 2 (ACE and ACE2), which were evaluated by Western blotting. Since the renin-angiotensin-aldosterone system (RAAS) has been implicated in the progress of kidney failure during coronavirus disease 2019, the influence of Angiotensin-(3-4) [Ang-(3-4)] was investigated. Ang-(3-4) is the shortest angiotensin-derived peptide, which is considered the physiological antagonist of several Ang II effects.
Results: Both overweight and undernutrition downregulate the levels of ACE2 without influence on the levels of ACE in proximal tubules from kidney rats. Administration of Ang-(3-4) upregulates ACE2 to levels above the control in overweight but not in undernourished rats.
Conclusions: Chronic undernourishment and overnourishment conditions play a central role in the renal ACE/ACE2 balance, and that the role of RAAS is also different in overweight and undernutrition.
Collapse
Affiliation(s)
- Rafael Luzes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-170 Rio de Janeiro, Brazil 2Graduate Program of Translational Biomedicine/BIOTRANS, Unigranrio University, 25071-202 Duque de Caxias, Brazil 3National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-170 Rio de Janeiro, Brazil 3National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Amaury Pereira-Acácio
- Graduate Program of Translational Biomedicine/BIOTRANS, Unigranrio University, 25071-202 Duque de Caxias, Brazil 3National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Thuany Crisóstomo
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil 4Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21941-170 Rio de Janeiro, Brazil 2Graduate Program of Translational Biomedicine/BIOTRANS, Unigranrio University, 25071-202 Duque de Caxias, Brazil 3National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
17
|
DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice. Nat Commun 2020; 11:4467. [PMID: 32948751 PMCID: PMC7501299 DOI: 10.1038/s41467-020-18304-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies have reported that upregulation of disulfide-bond A oxidoreductase-like protein (DsbA-L) prevented lipid-induced renal injury in diabetic nephropathy (DN). However, the role and regulation of proximal tubular DsbA-L for renal tubulointerstitial fibrosis (TIF) remains unclear. In current study, we found that a proximal tubules-specific DsbA-L knockout mouse (PT-DsbA-L-KO) attenuated UUO-induced TIF, renal cell apoptosis and inflammation. Mechanistically, the DsbA-L interacted with Hsp90 in mitochondria of BUMPT cells which activated the signaling of Smad3 and p53 to produce connective tissue growth factor (CTGF) and then resulted in accumulation of ECM of BUMPT cells and mouse kidney fibroblasts. In addition, the progression of TIF caused by UUO, ischemic/reperfusion (I/R), aristolochic acid, and repeated acute low-dose cisplatin was also alleviated in PT-DsbA-L-KO mice via the activation of Hsp90 /Smad3 and p53/CTGF axis. Finally, the above molecular changes were verified in the kidney biopsies from patients with obstructive nephropathy (Ob). Together, these results suggest that DsbA-L in proximal tubular cells promotes TIF via activation of the Hsp90 /Smad3 and p53/CTGF axis. DsbA-L upregulation prevents lipid-induced renal injury in diabetic nephropathy. Here, the authors show that DsbA-L knockout attenuates tubulointerstitial fibrosis in mice, and show that this occurs via activation of Smad3 and p53, which result in modulation of CTGF, a regulator of kidney fibrosis.
Collapse
|
18
|
Martínez-Klimova E, Aparicio-Trejo OE, Gómez-Sierra T, Jiménez-Uribe AP, Bellido B, Pedraza-Chaverri J. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction. Biofactors 2020; 46:716-733. [PMID: 32905648 DOI: 10.1002/biof.1673] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid β-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.
Collapse
Affiliation(s)
- Elena Martínez-Klimova
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|