1
|
Tong SK, Chang CY, Shih SW, Chua FZ, Hwang PP, Chou MY. Regulatory Role of Oxytocin in Ionocyte Functions During Zebrafish Cold Acclimation. FASEB J 2025; 39:e70587. [PMID: 40277309 DOI: 10.1096/fj.202500161r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Environmental temperatures substantially affect both endothermic and ectothermic vertebrates despite the two types of vertebrates having different adaptive strategies. Notably, the cellular and physiological mechanisms employed by ectothermic animals to cope with environmental changes remain poorly understood. Using zebrafish as a model, we investigated the detailed processes of cold acclimation in such fish. We analyzed the activation of oxytocin (OT) neurons and the release of peptide hormones into circulation within 3 h of cold exposure at 18°C, with this process followed by a dynamic downregulation at 24 h. Prolonged cold stress for 7 days resulted in a sustained reduction of plasma OT levels but a 30% increase in OT neuron numbers, which replenished the OT reservoir. We observed significant upregulation of RNA levels for proton ATPase (atp6v1aa) and epithelial calcium channel (trpv6) in the gills, indicating osmolarity acclimation by 7 days of cold exposure. Proton efflux was rapidly decreased within minutes of acute cold stress, but this reduction was mitigated by pretreatment with an OT agonist. Furthermore, OT was essential for the adaptive upregulation of ion-regulating genes (atp6v1aa and trpv6) during 7 days of cold acclimation. Although fundamental differences exist between endothermic and ectothermic animals, OT plays an evolutionarily conserved and pivotal role in cold acclimation, ensuring proper physiological adaptation to support survival under cold stress.
Collapse
Affiliation(s)
- Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Yung Chang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Fang Zhi Chua
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Emmanuel NS, Yusuf T, Bako IG, Malgwi IS, Eze ED, Ali Z, Aliyu M. Hematological changes, oxidative stress assessment, and dysregulation of aquaporin-3 channel, prolactin, and oxytocin receptors in kidneys of lactating Wistar rats treated with monosodium glutamate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6213-6229. [PMID: 38446217 DOI: 10.1007/s00210-024-03008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
High consumption of locally produced delicacies could expose nursing mothers to high monosodium glutamate (MSG) levels, frequently used as a necessary condiment in low-income countries. Thus, this study evaluated some novel preliminary changes in renal hormonal receptors, the aquaporin-3 channel, oxidative stress markers, and hematological indices induced by monosodium glutamate in lactating rats. Post-parturition, twenty-four (24) lactating Wistar rats were divided into four (4) groups of six rats each (n = 6). Oral administration of distilled water and MSG started three (3) days postpartum as follows: group 1: distilled water (1 ml/kg BW), group 2: MSG (925 mg/kg BW), group 3: MSG (1850 mg/kg BW), and group 4: MSG (3700 mg/kg BW). At the end of the experiment, which lasted fourteen (14) days, animals were sacrificed and samples of blood and tissues were obtained for biochemical analysis. MSG administration significantly (p < 0.05) increased ROS and MDA, with a significant (p < 0.05) decrease in kidney antioxidants. Serum creatinine, total, conjugated, and unconjugated bilirubin significantly (p < 0.05) increased with MSG administration. The prolactin receptor was significantly reduced (p < 0.05), while the oxytocin receptor and aquaporin-3 channel were significantly (p < 0.05) increased in the MSG-administered groups. There were significant (p < 0.05) changes in the hematological indices of the MSG-administered animals. Thus, the findings of this study suggest that high MSG consumption causes hematological alterations and may alter renal function via increased ROS production and dysregulation of the AQP-3 channel, prolactin, and oxytocin receptors in the kidneys of lactating Wistar rats.
Collapse
Affiliation(s)
- Nachamada Solomon Emmanuel
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria.
| | - Tanko Yusuf
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Gaya Bako
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Samaila Malgwi
- Department of Human Physiology, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Huye, Rwanda
| | - Zubairu Ali
- Department of Human Physiology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Mohammed Aliyu
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
3
|
Ishida A, Mizuno H, Aoyama K, Sasaki S, Negishi Y, Arakawa T, Mori T. Partial nephrogenic diabetes insipidus with a novel arginine vasopressin receptor 2 gene variant. Clin Pediatr Endocrinol 2022; 31:44-49. [PMID: 35002068 PMCID: PMC8713061 DOI: 10.1297/cpe.2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022] Open
Abstract
X-linked nephrogenic diabetes insipidus (NDI) is caused by variations in arginine vasopressin receptor 2 (AVPR2). Some patients show partial resistance to arginine vasopressin (AVP). A 19-month-old Japanese boy presented with polydipsia since infancy. His mother had a history of polydipsia during pregnancy, and his maternal granduncle also had polydipsia. Intermediate urine osmolality and markedly high plasma AVP levels were observed in the water deprivation test. Subsequent pitressin administration caused no further elevation in urine osmolality. We diagnosed the patient with partial NDI, initiated therapy with hydrochlorothiazide, and placed him on a low-sodium diet. Although his urine volume decreased by 20-30% after the initiation of therapy, progressive hydronephrosis and growth retardation developed 2 years later. We investigated his genetic background by multiplex targeted sequencing of genes associated with inherited renal diseases, including AVPR2 and aquaporin-2 (AQP2). We identified a hemizygous missense variant in AVPR2 NM_000054:c.371A>G,p.(Tyr124Cys) in the boy and a heterozygous variant in the mother at the same locus. Distinguishing partial NDI from primary polydipsia is difficult because of its mild symptoms. Markedly elevated plasma AVP levels with intermediate urine osmolality may suggest partial NDI, and genetic analysis can be useful for such patients.
Collapse
Affiliation(s)
- Atsushi Ishida
- Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Haruo Mizuno
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Aoyama
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shiori Sasaki
- Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Tajimi, Japan.,Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yutaka Negishi
- Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Tajimi, Japan.,Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takeshi Arakawa
- Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Maeyama T, Etani Y, Nishigaki S, Kawai M. Nephrogenic diabetes insipidus caused by a novel missense variant (p.S127Y) in the AVPR2 gene. Clin Pediatr Endocrinol 2021; 30:115-118. [PMID: 33867673 PMCID: PMC8022036 DOI: 10.1297/cpe.30.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Takatoshi Maeyama
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuri Etani
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Satsuki Nishigaki
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Masanobu Kawai
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan.,Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| |
Collapse
|
5
|
Natochin YV, Shakhmatova EI, Bogolepova AE. The Mechanism of the Solute-Free Water Reabsorption Increase in the Rat Kidney by Oxytocin Saluresis. DOKL BIOCHEM BIOPHYS 2021; 497:95-98. [PMID: 33666805 PMCID: PMC8068678 DOI: 10.1134/s1607672921020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022]
Abstract
We found an experimental solution to the paradox when the reabsorption of solute-free water increases with a simultaneous increase in diuresis and saluresis in the rat kidney under the oxytocin action. Injection of oxytocin to rats (0.25 nmol/100 g of body weight) increases diuresis from 0.16 ± 0.03 to 0.26 ± 0.02 mL/h, the excretion of solutes from 134 ± 13.7 to 300 ± 16.3 μOsm/h, and the reabsorption of solute-free water, which correlates with the renal excretion of oxytocin (p < 0.001). The mechanism of the effect is that oxytocin decreases the reabsorption of ultrafiltrate in the proximal tubule (the clearance of lithium increases) and increases the fluid flow through the distal segment of the nephron. In vivarium rats, urine osmolality (1010 ± 137 mOsm/kg H2O) and the concentration of vasopressin are high, this causes an increase in the reabsorption of solute-free water. Thus, oxytocin increases saluresis, which, against the background of a high level of endogenous vasopressin, increases the water reabsorption in the collecting ducts.
Collapse
Affiliation(s)
- Yu V Natochin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - E I Shakhmatova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A E Bogolepova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
6
|
Jankowski M, Broderick TL, Gutkowska J. The Role of Oxytocin in Cardiovascular Protection. Front Psychol 2020; 11:2139. [PMID: 32982875 PMCID: PMC7477297 DOI: 10.3389/fpsyg.2020.02139] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The beneficial effects of oxytocin on infarct size and functional recovery of the ischemic reperfused heart are well documented. The mechanisms for this cardioprotection are not well defined. Evidence indicates that oxytocin treatment improves cardiac work, reduces apoptosis and inflammation, and increases scar vascularization. Oxytocin-mediated cytoprotection involves the production of cGMP stimulated by local release of atrial natriuretic peptide and synthesis of nitric oxide. Treatment with oxytocin reduces the expression of proinflammatory cytokines and reduces immune cell infiltration. Oxytocin also stimulates differentiation stem cells to cardiomyocyte lineages as well as generation of endothelial and smooth muscle cells, promoting angiogenesis. The beneficial actions of oxytocin may include the increase in glucose uptake by cardiomyocytes, reduction in cardiomyocyte hypertrophy, decrease in oxidative stress, and mitochondrial protection of several cell types. In cardiac and cellular models of ischemia and reperfusion, acute administration of oxytocin at the onset of reperfusion enhances cardiomyocyte viability and function by activating Pi3K and Akt phosphorylation and downstream cellular signaling. Reperfusion injury salvage kinase and signal transducer and activator of transcription proteins cardioprotective pathways are involved. Oxytocin is cardioprotective by reducing the inflammatory response and improving cardiovascular and metabolic function. Because of its pleiotropic nature, this peptide demonstrates a clear potential for the treatment of cardiovascular pathologies. In this review, we discuss the possible cellular mechanisms of action of oxytocin involved in cardioprotection.
Collapse
Affiliation(s)
- Marek Jankowski
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|