1
|
Saleh K, KIRBAĞ S, DALKILIÇ S. Inhibitory Effects of Terfezia (Ascomycota) Desert Truffles on PANC-1 Cell Growth Via Upregulation of the Pro-apoptotic Genes TP53, CDKN1A, and BAX, and Downregulation of the Anti-apoptotic Gene BCL2. Int J Med Mushrooms 2022; 24:61-70. [DOI: 10.1615/intjmedmushrooms.2022044383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Krumova E, Abrashev R, Dishliyska V, Stoyancheva G, Kostadinova N, Miteva-Staleva J, Spasova B, Angelova M. Cold-active catalase from the psychrotolerant fungus Penicillium griseofulvum. J Basic Microbiol 2021; 61:782-794. [PMID: 34309887 DOI: 10.1002/jobm.202100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Cold-active catalase (CAT) elicits great interest because of its vast prospective at the medical, commercial, and biotechnological levels. The study paper reports the production of cold-active CAT by the strain Penicillium griseofulvum P29 isolated from Antarctic soil. Improved enzyme production was achieved by optimization of medium and culture conditions. Maximum CAT was demonstrated under low glucose content (2%), 10% inoculum size, temperature 20°C, and dissolved oxygen concentration (DO) 40%. An effective laboratory technology based on changing the oxidative stress level through an increase of DO in the bioreactor was developed. The used strategy resulted in a 1.7- and 1.4-fold enhanced total enzyme activity and maximum enzyme productivity. The enzyme was purified and characterized. P. griseofulvum P29 CAT was most active at approximately 20°C and pH 6.0. Its thermostability was in the range between 5°C and 40°C.
Collapse
Affiliation(s)
- Ekaterina Krumova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Radoslav Abrashev
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vladislava Dishliyska
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Galina Stoyancheva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nedelina Kostadinova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jeny Miteva-Staleva
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Boryana Spasova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Angelova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Marqués‐Gálvez JE, Miyauchi S, Paolocci F, Navarro‐Ródenas A, Arenas F, Pérez‐Gilabert M, Morin E, Auer L, Barry KW, Kuo A, Grigoriev IV, Martin FM, Kohler A, Morte A. Desert truffle genomes reveal their reproductive modes and new insights into plant-fungal interaction and ectendomycorrhizal lifestyle. THE NEW PHYTOLOGIST 2021; 229:2917-2932. [PMID: 33118170 PMCID: PMC7898904 DOI: 10.1111/nph.17044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Desert truffles are edible hypogeous fungi forming ectendomycorrhizal symbiosis with plants of Cistaceae family. Knowledge about the reproductive modes of these fungi and the molecular mechanisms driving the ectendomycorrhizal interaction is lacking. Genomes of the highly appreciated edible desert truffles Terfezia claveryi Chatin and Tirmania nivea Trappe have been sequenced and compared with other Pezizomycetes. Transcriptomes of T. claveryi × Helianthemum almeriense mycorrhiza from well-watered and drought-stressed plants, when intracellular colonizations is promoted, were investigated. We have identified the fungal genes related to sexual reproduction in desert truffles and desert-truffles-specific genomic and secretomic features with respect to other Pezizomycetes, such as the expansion of a large set of gene families with unknown Pfam domains and a number of species or desert-truffle-specific small secreted proteins differentially regulated in symbiosis. A core set of plant genes, including carbohydrate, lipid-metabolism, and defence-related genes, differentially expressed in mycorrhiza under both conditions was found. Our results highlight the singularities of desert truffles with respect to other mycorrhizal fungi while providing a first glimpse on plant and fungal determinants involved in ecto to endo symbiotic switch that occurs in desert truffle under dry conditions.
Collapse
Affiliation(s)
- José Eduardo Marqués‐Gálvez
- Departamento de Biología Vegetal (Botánica)Facultad de BiologíaUniversidad de MurciaCampus de EspinardoMurcia30100Spain
- INRAEUMR 1136Interactions Arbres/Microorganismes (IAM)Centre INRAE GrandEst ‐ NancyUniversité de LorraineChampenoux54280France
| | - Shingo Miyauchi
- INRAEUMR 1136Interactions Arbres/Microorganismes (IAM)Centre INRAE GrandEst ‐ NancyUniversité de LorraineChampenoux54280France
| | - Francesco Paolocci
- CNR‐IBBRIstituto di Bioscienze e BiorisorseUOS di PerugiaPerugia06128Italy
| | - Alfonso Navarro‐Ródenas
- Departamento de Biología Vegetal (Botánica)Facultad de BiologíaUniversidad de MurciaCampus de EspinardoMurcia30100Spain
| | - Francisco Arenas
- Departamento de Biología Vegetal (Botánica)Facultad de BiologíaUniversidad de MurciaCampus de EspinardoMurcia30100Spain
| | - Manuela Pérez‐Gilabert
- Departamento de Bioquímica y Biología Molecular‐AUniversidad de MurciaCampus de EspinardoMurcia30100Spain
| | - Emmanuelle Morin
- INRAEUMR 1136Interactions Arbres/Microorganismes (IAM)Centre INRAE GrandEst ‐ NancyUniversité de LorraineChampenoux54280France
| | - Lucas Auer
- INRAEUMR 1136Interactions Arbres/Microorganismes (IAM)Centre INRAE GrandEst ‐ NancyUniversité de LorraineChampenoux54280France
| | - Kerrie W. Barry
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCA94598USA
| | - Alan Kuo
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCA94598USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCA94598USA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCA94598USA
| | - Francis M. Martin
- INRAEUMR 1136Interactions Arbres/Microorganismes (IAM)Centre INRAE GrandEst ‐ NancyUniversité de LorraineChampenoux54280France
| | - Annegret Kohler
- INRAEUMR 1136Interactions Arbres/Microorganismes (IAM)Centre INRAE GrandEst ‐ NancyUniversité de LorraineChampenoux54280France
| | - Asunción Morte
- Departamento de Biología Vegetal (Botánica)Facultad de BiologíaUniversidad de MurciaCampus de EspinardoMurcia30100Spain
| |
Collapse
|
4
|
Dyary HO. Subacute Toxicity of Brown Truffle (Terfezia claveryi) on Sprague-Dawley Rats. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i2.982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brown truffle (Terfezia claveryi) is a wild fungi species collected and consumed by humans in Iraq, especially during the raining season, from February to April. However, the toxicological effects of this fungus have not been studied in humans. This study tested the subacute toxicity of brown truffle’s methanolic extract on a rat model. Daily oral doses of 200, 400, and 800 mg/kg were administered to adult Sprague-Dawley rat groups of both sexes for 14 days. There were no behavioral changes, no alterations in body weight, organ weight, and body weight gain (p>0.05) in the treated rats, compared to the untreated control group. The hematological and serum biochemical parameters did not show significant (p>0.05) differences from the control. Microscopic examinations of the brain, lungs, liver, spleen, kidney, and heart tissues revealed no pathological lesions in treated rats’ organs. These results imply that the administration of methanolic extract of T. claveryi to rats does not result in observable toxicity
Collapse
|
5
|
Marqués-Gálvez JE, Navarro-Ródenas A, Peguero-Pina JJ, Arenas F, Guarnizo AL, Gil-Pelegrín E, Morte A. Elevated atmospheric CO 2 modifies responses to water-stress and flowering of Mediterranean desert truffle mycorrhizal shrubs. PHYSIOLOGIA PLANTARUM 2020; 170:537-549. [PMID: 32869857 DOI: 10.1111/ppl.13190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Predicted increases in atmospheric concentration of carbon dioxide (CO2 ) coupled with increased temperatures and drought are expected to strongly influence the development of most of the plant species in the world, especially in areas with high risk of desertification like the Mediterranean basin. Helianthemum almeriense is an ecologically important Mediterranean shrub with an added interest because it serves as the host for the Terfezia claveryi mycorrhizal fungus, which is a desert truffle with increasingly commercial interest. Although both plant and fungi are known to be well adapted to dry conditions, it is still uncertain how the increase in atmospheric CO2 will influence them. In this article we have addressed the physiological responses of H. almeriense × T. claveryi mycorrhizal plants to increases in atmospheric CO2 coupled with drought and high vapor pressure deficit. This work reports one of the few estimations of mesophyll conductance in a drought deciduous Mediterranean shrub and evaluates its role in photosynthesis limitation. High atmospheric CO2 concentrations help desert truffle mycorrhizal plants to cope with the adverse effects of progressive drought during Mediterranean springs by improving carbon net assimilation, intrinsic water use efficiency and dispersal of the species through increased flowering events.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Francisco Arenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Angel Luigi Guarnizo
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Asunción Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| |
Collapse
|
6
|
Agrobacterium tumefaciens-Mediated Genetic Transformation of the Ect-endomycorrhizal Fungus Terfezia boudieri. Genes (Basel) 2020; 11:genes11111293. [PMID: 33143066 PMCID: PMC7693413 DOI: 10.3390/genes11111293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023] Open
Abstract
Mycorrhizal desert truffles such as Terfezia boudieri, Tirmania nivea, and Terfezia claveryi, form mycorrhizal associations with plants of the Cistaceae family. These valued truffles are still collected from the wild and not cultivated under intensive farming due to the lack of basic knowledge about their biology at all levels. Recently, several genomes of desert truffles have been decoded, enabling researchers to attempt genetic manipulations to enable cultivation. To execute such manipulations, the development of molecular tools for genes transformation into truffles is needed. We developed an Agrobacterium tumefaciens-mediated genetic transformation system in T. boudieri. This system was optimized for the developmental stage of the mycelia explants, bacterial optical density, infection and co-cultivation durations, and concentrations of the selection antibiotics. The pFPL-Rh plasmid harboring hph gene conferring hygromycin resistance as a selection marker and the red fluorescent protein gene were used as visual reporters. The optimal conditions were incubation with 200 μM of acetosyringone, attaining a bacterial optical density of 0.3 OD600; transfer time of 45 min; and co-cultivation for 3 days. This is the first report on a transformation system for T. boudieri, and the proposed protocol can be adapted for the transformation of other important desert truffles as well as ectomycorrhizal species.
Collapse
|