1
|
Slobodova N, Gladysheva-Azgari M, Sharko F, Petrova K, Boulygina E, Tsygankova S, Mitrofanova I. Genetic Diversity of the Collection of Far Eastern Actinidia spp. Revealed by RAD Sequencing Technology. PLANTS (BASEL, SWITZERLAND) 2024; 14:7. [PMID: 39795267 PMCID: PMC11723124 DOI: 10.3390/plants14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
More than ten species of the Actinidia Lindl. genus bear edible fruits rich in biologically active compounds, which are essential and beneficial for human health. The most popular cultivars today are the large-fruited Actinidia species, A. deliciosa and A. chinensis, commonly known as kiwi. However, small-fruited kiwi cultivars are gaining prominence due to their high nutritional value, superior cold resistance, and suitability for temperate climates. In Russia, these are represented by Far Eastern species: A. arguta, A. kolomikta, and A. polygama. Despite increasing consumer interest, Russian Actinidia cultivars remain little studied, with fragmented genetic data available for breeding purposes. Our objective was to analyze the Actinidia collection at the Federal Horticultural Center for Breeding, Agrotechnology, and Nursery and the N.V. Tsitsin Main Botanical Garden (MBG RAS, Moscow), which includes samples from four species, A. kolomikta, A. arguta, A. polygama, A. purpurea, interspecific hybrids, and derived varieties, using RAD sequencing. We assessed the genetic variability of all species, identified population groups within A. kolomikta and A. arguta based on origin, determined ploidy levels across the collection, and identified a set of SNP markers associated with valuable agronomic traits.
Collapse
Affiliation(s)
- Natalia Slobodova
- N.V. Tsitsin Main Botanical Garden, Russian Academy of Sciences, 127276 Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, 101000 Moscow, Russia
| | - Maria Gladysheva-Azgari
- N.V. Tsitsin Main Botanical Garden, Russian Academy of Sciences, 127276 Moscow, Russia
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia
| | - Fedor Sharko
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia
| | - Kristina Petrova
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia
| | - Eugenia Boulygina
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia
| | - Svetlana Tsygankova
- N.V. Tsitsin Main Botanical Garden, Russian Academy of Sciences, 127276 Moscow, Russia
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia
| | - Irina Mitrofanova
- N.V. Tsitsin Main Botanical Garden, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
2
|
Canaguier A, Guilbaud R, Denis E, Magdelenat G, Belser C, Istace B, Cruaud C, Wincker P, Le Paslier MC, Faivre-Rampant P, Barbe V. Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection. BMC Genomics 2022; 23:317. [PMID: 35448948 PMCID: PMC9026655 DOI: 10.1186/s12864-022-08499-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1). RESULTS We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted. CONCLUSIONS Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference.
Collapse
Affiliation(s)
- Aurélie Canaguier
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Romane Guilbaud
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Erwan Denis
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Ghislaine Magdelenat
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Corinne Cruaud
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Marie-Christine Le Paslier
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Patricia Faivre-Rampant
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
3
|
Sun S, Fang J, Lin M, Hu C, Qi X, Chen J, Zhong Y, Muhammad A, Li Z, Li Y. Comparative Metabolomic and Transcriptomic Studies Reveal Key Metabolism Pathways Contributing to Freezing Tolerance Under Cold Stress in Kiwifruit. FRONTIERS IN PLANT SCIENCE 2021; 12:628969. [PMID: 34140959 PMCID: PMC8204810 DOI: 10.3389/fpls.2021.628969] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Cold stress poses a serious treat to cultivated kiwifruit since this plant generally has a weak ability to tolerate freezing tolerance temperatures. Surprisingly, however, the underlying mechanism of kiwifruit's freezing tolerance remains largely unexplored and unknown, especially regarding the key pathways involved in conferring this key tolerance trait. Here, we studied the metabolome and transcriptome profiles of the freezing-tolerant genotype KL (Actinidia arguta) and freezing-sensitive genotype RB (A. arguta), to identify the main pathways and important metabolites related to their freezing tolerance. A total of 565 metabolites were detected by a wide-targeting metabolomics method. Under (-25°C) cold stress, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotations showed that the flavonoid metabolic pathways were specifically upregulated in KL, which increased its ability to scavenge for reactive oxygen species (ROS). The transcriptome changes identified in KL were accompanied by the specific upregulation of a codeinone reductase gene, a chalcone isomerase gene, and an anthocyanin 5-aromatic acyltransferase gene. Nucleotides metabolism and phenolic acids metabolism pathways were specifically upregulated in RB, which indicated that RB had a higher energy metabolism and weaker dormancy ability. Since the LPCs (LysoPC), LPEs (LysoPE) and free fatty acids were accumulated simultaneously in both genotypes, these could serve as biomarkers of cold-induced frost damages. These key metabolism components evidently participated in the regulation of freezing tolerance of both kiwifruit genotypes. In conclusion, the results of this study demonstrated the inherent differences in the composition and activity of metabolites between KL and RB under cold stress conditions.
Collapse
Affiliation(s)
- Shihang Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jinbao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Miaomiao Lin
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chungen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Xiujuan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinyong Chen
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunpeng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Abid Muhammad
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhi Li
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yukuo Li
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|