1
|
Hong T, Caxaria S, Daniels Gatward LF, Hussain S, Zhao M, King AJF, Rackham CL, Jones PM. Mesenchymal stromal cell secretory molecules improve the functional survival of human islets. Diabet Med 2023; 40:e15227. [PMID: 37728506 PMCID: PMC10915897 DOI: 10.1111/dme.15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
AIMS Human islet transplantation as a therapy for type 1 diabetes is compromised by the loss of functional beta cells in the immediate post-transplantation period. Mesenchymal stromal cells (MSCs) and MSC-derived secretory peptides improve the outcomes of islet transplantation in rodent models of diabetes. Here, we utilized a mouse model for human islet transplantation and assessed the effects of a cocktail of MSC-secreted peptides (screened by MSC-secretome for human islet GPCRs) on the functional survival of human islets. METHODS Human islets from nine donors (Age: 36-57; BMI: 20-35) were treated with a cocktail of human recombinant annexin A1 (ANXA1), stromal cell-derived factor-1 (SDF-1/CXCL12) and complement component C3 (C3a). Glucose-stimulated insulin secretion (GSIS) was assessed in static incubation, and cytokine-induced apoptosis was assessed by measuring caspase 3/7 activity. mRNA expression levels were determined by qPCR. Human islet function in vivo was assessed using a novel model for human islet transplantation into a T1D mouse model. Human islet function in vivo was assessed using islet transplantation under the kidney capsule of immunodeficient mice prior to STZ destruction of endogenous mouse beta cells to model T1DM. RESULTS Pretreatment with a cocktail of MSC-secreted peptides increased GSIS in vitro and protected against cytokine-induced apoptosis in human islets isolated from nine donors. Animals transplanted with either treated or untreated human islets remained normoglycaemic for up to 28 days after STZ-administration to ablate the endogenous mouse beta cells, whereas non-transplanted animals showed significantly increased blood glucose immediately after STZ administration. Removal of the human islet graft by nephrectomy resulted in rapid increases in blood glucose to similar levels as the non-transplanted controls. Pretreating human islets with the MSC-derived cocktail significantly improved glucose tolerance in graft recipients, consistent with enhanced functional survival of the treated islets in vivo. CONCLUSION Pretreating human islets before transplantation with a defined cocktail of MSC-derived molecules could be employed to improve the quality of human islets for transplantation therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Tzu‐Wen Hong
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and SciencesKing's College LondonLondonUK
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of MedicineQueen Mary University of LondonLondonUK
| | - Lydia F. Daniels Gatward
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and SciencesKing's College LondonLondonUK
| | - Sufyan Hussain
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and SciencesKing's College LondonLondonUK
- Department of Diabetes and Endocrinology, Guy's and St Thomas' NHS Foundation TrustLondonUK
| | - Min Zhao
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and SciencesKing's College LondonLondonUK
| | - Aileen J. F. King
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and SciencesKing's College LondonLondonUK
| | - Chloe L. Rackham
- Exeter Centre for Excellence in Diabetes, Institute of Biomedical and Clinical ScienceUniversity of ExeterExeterUK
| | - Peter M. Jones
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and SciencesKing's College LondonLondonUK
| |
Collapse
|
2
|
Malik SS, Padmanabhan D, Hull-Meichle RL. Pancreas and islet morphology in cystic fibrosis: clues to the etiology of cystic fibrosis-related diabetes. Front Endocrinol (Lausanne) 2023; 14:1269139. [PMID: 38075070 PMCID: PMC10704027 DOI: 10.3389/fendo.2023.1269139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cystic fibrosis (CF) is a multi-organ disease caused by loss-of-function mutations in CFTR (which encodes the CF transmembrane conductance regulator ion channel). Cystic fibrosis related diabetes (CFRD) occurs in 40-50% of adults with CF and is associated with significantly increased morbidity and mortality. CFRD arises from insufficient insulin release from β cells in the pancreatic islet, but the mechanisms underlying the loss of β cell function remain understudied. Widespread pathological changes in the CF pancreas provide clues to these mechanisms. The exocrine pancreas is the epicenter of pancreas pathology in CF, with ductal pathology being the initiating event. Loss of CFTR function results in ductal plugging and subsequent obliteration. This in turn leads to destruction of acinar cells, fibrosis and fatty replacement. Despite this adverse environment, islets remain relatively well preserved. However, islet composition and arrangement are abnormal, including a modest decrease in β cells and an increase in α, δ and γ cell abundance. The small amount of available data suggest that substantial loss of pancreatic/islet microvasculature, autonomic nerve fibers and intra-islet macrophages occur. Conversely, T-cell infiltration is increased and, in CFRD, islet amyloid deposition is a frequent occurrence. Together, these pathological changes clearly demonstrate that CF is a disease of the pancreas/islet microenvironment. Any or all of these changes are likely to have a dramatic effect on the β cell, which relies on positive signals from all of these neighboring cell types for its normal function and survival. A thorough characterization of the CF pancreas microenvironment is needed to develop better therapies to treat, and ultimately prevent CFRD.
Collapse
Affiliation(s)
- Sarah S. Malik
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Diksha Padmanabhan
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, United States
| | - Rebecca L. Hull-Meichle
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, United States
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Fontcuberta-PiSunyer M, García-Alamán A, Prades È, Téllez N, Alves-Figueiredo H, Ramos-Rodríguez M, Enrich C, Fernandez-Ruiz R, Cervantes S, Clua L, Ramón-Azcón J, Broca C, Wojtusciszyn A, Montserrat N, Pasquali L, Novials A, Servitja JM, Vidal J, Gomis R, Gasa R. Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors. Commun Biol 2023; 6:256. [PMID: 36964318 PMCID: PMC10039074 DOI: 10.1038/s42003-023-04627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing β cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create β-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into β-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a β-cell fate. Reprogrammed cells exhibit β-cell features including β-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.
Collapse
Affiliation(s)
| | - Ainhoa García-Alamán
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Èlia Prades
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noèlia Téllez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine of University of Vic, Central University of Catalonia (UVic-UCC), Vic, Spain
- Institute of Health Research and Innovation at Central Catalonia (IRIS-CC), Vic, Spain
| | - Hugo Alves-Figueiredo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L., México
| | | | - Carlos Enrich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Fernandez-Ruiz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Cervantes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Clua
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorenzo Pasquali
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Novials
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan-Marc Servitja
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ramon Gomis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rosa Gasa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Inoue R, Nishiyama K, Li J, Miyashita D, Ono M, Terauchi Y, Shirakawa J. The Feasibility and Applicability of Stem Cell Therapy for the Cure of Type 1 Diabetes. Cells 2021; 10:cells10071589. [PMID: 34202521 PMCID: PMC8304653 DOI: 10.3390/cells10071589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
Stem cell therapy using islet-like insulin-producing cells derived from human pluripotent stem cells has the potential to allow patients with type 1 diabetes to withdraw from insulin therapy. However, several issues exist regarding the use of stem cell therapy to treat type 1 diabetes. In this review, we will focus on the following topics: (1) autoimmune responses during the autologous transplantation of stem cell-derived islet cells, (2) a comparison of stem cell therapy with insulin injection therapy, (3) the impact of the islet microenvironment on stem cell-derived islet cells, and (4) the cost-effectiveness of stem cell-derived islet cell transplantation. Based on these various viewpoints, we will discuss what is required to perform stem cell therapy for patients with type 1 diabetes.
Collapse
Affiliation(s)
- Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Jinghe Li
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Daisuke Miyashita
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Masato Ono
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
- Correspondence: ; Tel.: +81-27-220-8850
| |
Collapse
|
5
|
Gołębiewska JE, Gołąb K, Gorycki T, Śledziński M, Gulczyński J, Żygowska I, Wolnik B, Hoffmann M, Witkowski P, Ricordi C, Szurowska E, Śledziński Z, Dębska-Ślizień A. "Old School" Islet Purification Based on the Unit Gravity Sedimentation as a Rescue Technique for Intraportal Islet Transplantation-A Case Report. Cell Transplant 2020; 29:963689720947098. [PMID: 32749147 PMCID: PMC7563026 DOI: 10.1177/0963689720947098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Here, we present a case that required a supplemental "old school" islet purification for a safe intraportal infusion. Following pancreas procurement from a brain-dead 26-year-old male donor (body mass index: 21.9), 24.6 ml of islet tissue was isolated after continuous density gradient centrifugation. The islet yield was 504,000 islet equivalent (IEQ), distributed among the following three fractions: 64,161 IEQ in 0.6 ml of pellet, 182,058 IEQ in 10 ml, and 258,010 IEQ in 14 ml with 95%, 20%, and 10% purity, respectively. After a 23-h culture, we applied supplemental islet purification, based on the separation of tissue subfractions during unit gravity sedimentation, a technique developed over 60 years ago ("old school"). This method enabled the reduction of the total pellet volume to 11.6 ml, while retaining 374,940 IEQ with a viability of over 90%. The final islet product was prepared in three infusion bags, containing 130,926 IEQ in 2.6 ml of pellet, 108,079 IEQ in 4 ml of pellet, and 135,935 IEQ in 5 ml of pellet with 65%, 40%, and 30% purity, respectively, and with the addition of unfractionated heparin (70 units/kg body weight). Upon the islet infusion from all three bags, portal pressure increased from 7 to 16 mmHg. Antithrombotic prophylaxis with heparin was continued for 48 h after the infusion, with target activated partial thromboplastin time 50-60 s, followed by fractionated heparin subcutaneous injections for 2 weeks. β-Cell graft function assessed on day 75 post-transplantation was good, according to Igls criteria, with complete elimination of severe hypoglycemic episodes and 50% reduction in insulin requirements. Time spent within the target glucose range (70-180 mg/dl) improved from 42% to 98% and HbA1c declined from 8.7% to 6.7%. Supplemental "old school" islet purification allowed for the safe and successful utilization of a robust and high-quality islet preparation, which otherwise would have been discarded.
Collapse
Affiliation(s)
- Justyna E. Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Karolina Gołąb
- Transplantation Institute, University of Chicago, Chicago, IL, USA
| | - Tomasz Gorycki
- Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Śledziński
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Gulczyński
- Laboratory for Cell and Tissue Banking and Transplantation- CellT, Gdańsk, Poland
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Iwona Żygowska
- Laboratory for Cell and Tissue Banking and Transplantation- CellT, Gdańsk, Poland
| | - Bogumił Wolnik
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Hoffmann
- Diabetes Research Institute and Cell Transplantation Center, University of Miami, Miami, FL, USA
| | - Piotr Witkowski
- Transplantation Institute, University of Chicago, Chicago, IL, USA
| | - Camillo Ricordi
- Diabetes Research Institute and Cell Transplantation Center, University of Miami, Miami, FL, USA
| | - Edyta Szurowska
- Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Śledziński
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|