1
|
M Saini V, Oner E, Ward MP, Hurley S, Henderson BD, Lewis F, Finn SP, Fitzmaurice GJ, O'Leary JJ, O'Toole S, O'Driscoll L, Gately K. A comparative study of circulating tumor cell isolation and enumeration technologies in lung cancer. Mol Oncol 2024. [PMID: 39105395 DOI: 10.1002/1878-0261.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
Circulating tumor cells (CTCs) have potential as diagnostic, prognostic, and predictive biomarkers in solid tumors. Despite Food and Drug Administration (FDA) approval of CTC devices in various cancers, the rarity and heterogeneity of CTCs in lung cancer make them technically challenging to isolate and analyze, hindering their clinical integration. Establishing a consensus through comparative analysis of different CTC systems is warranted. This study aimed to evaluate seven different CTC enrichment methods across five technologies using a standardized spike-in protocol: the CellMag™ (EpCAM-dependent enrichment), EasySep™ and RosetteSep™ (blood cell depletion), and the Parsortix® PR1 and the new design Parsortix® Prototype (PP) (size- and deformability-based enrichment). The Parsortix® systems were also evaluated for any differences in recovery rates between cell harvest versus in-cassette staining. Healthy donor blood (5 mL) was spiked with 100 fluorescently labeled EpCAMhigh H1975 cells, processed through each system, and the isolation efficiency was calculated. The CellMag™ had the highest recovery rate (70 ± 14%), followed by Parsortix® PR1 in-cassette staining, while the EasySep™ had the lowest recovery (18 ± 8%). Additional spike-in experiments were performed with EpCAMmoderate A549 and EpCAMlow H1299 cells using the CellMag™ and Parsortix® PR1 in-cassette staining. The recovery rate of CellMag™ significantly reduced to 35 ± 14% with A549 cells and 1 ± 1% with H1299 cells. However, the Parsortix® PR1 in-cassette staining showed cell phenotype-independent and consistent recovery rates among all lung cancer cell lines: H1975 (49 ± 2%), A549 (47 ± 10%), and H1299 (52 ± 10%). Furthermore, we demonstrated that the Parsortix® PR1 in-cassette staining method is capable of isolating heterogeneous single CTCs and cell clusters from patient samples. The Parsortix® PR1 in-cassette staining, capable of isolating different phenotypes of CTCs as either single cells or cell clusters with consistent recovery rates, is considered optimal for CTC enrichment for lung cancer, albeit needing further optimization and validation.
Collapse
Affiliation(s)
- Volga M Saini
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Ezgi Oner
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Mark P Ward
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Sinead Hurley
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
| | - Brian David Henderson
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Faye Lewis
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | | | - John J O'Leary
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Sharon O'Toole
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Lorraine O'Driscoll
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Kathy Gately
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| |
Collapse
|
2
|
Li L, Jiang H, Zeng B, Wang X, Bao Y, Chen C, Ma L, Yuan J. Liquid biopsy in lung cancer. Clin Chim Acta 2024; 554:117757. [PMID: 38184141 DOI: 10.1016/j.cca.2023.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Lung cancer is a highly prevalent malignancy worldwide and the primary cause of mortality. The absence of systematic and standardized diagnostic approaches for identifying potential pulmonary nodules, early-stage cancers, and indeterminate tumors has led clinicians to consider tissue biopsy and pathological sections as the preferred method for clinical diagnosis, often regarded as the gold standard. The conventional tissue biopsy is an invasive procedure that does not adequately capture the diverse characteristics and evolving nature of tumors. Recently, the concept of 'liquid biopsy' has gained considerable attention as a promising solution. Liquid biopsy is a non-invasive approach that facilitates repeated analysis, enabling real-time monitoring of tumor recurrence, metastasis, and response to treatment. Currently, liquid biopsy includes circulating tumor cells, circulating cell-free DNA, circulating tumor DNA, circulating cell-free RNA, extracellular vesicles, and other proteins and metabolites. With rapid progress in molecular technology, liquid biopsy has emerged as a highly promising and intriguing approach, yielding compelling results. This article critically examines the significant role and potential clinical implications of liquid biopsy in the diagnosis, treatment, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Lan Li
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haixia Jiang
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China
| | - Bingjie Zeng
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China
| | - Xianzhao Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China
| | - Yunxia Bao
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China
| | - Changqiang Chen
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China.
| | - Lifang Ma
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China.
| | - Jin Yuan
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Jia S, Yang Y, Zhu Y, Yang W, Ling L, Wei Y, Fang X, Lin Q, Hamaï A, Mehrpour M, Gao J, Tan W, Xia Y, Chen J, Jiang W, Gong C. Association of FTH1-Expressing Circulating Tumor Cells With Efficacy of Neoadjuvant Chemotherapy for Patients With Breast Cancer: A Prospective Cohort Study. Oncologist 2024; 29:e25-e37. [PMID: 37390841 PMCID: PMC10769790 DOI: 10.1093/oncolo/oyad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/23/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND The association between different phenotypes and genotypes of circulating tumor cells (CTCs) and efficacy of neoadjuvant chemotherapy (NAC) remains uncertain. This study was conducted to evaluate the relationship of FTH1 gene-associated CTCs (F-CTC) with/without epithelial-mesenchymal transition (EMT) markers, or their dynamic changes with the efficacy of NAC in patients with non-metastatic breast cancer. PATIENTS AND METHODS This study enrolled 120 patients with non-metastatic breast cancer who planned to undergo NAC. The FTH1 gene and EMT markers in CTCs were detected before NAC (T0), after 2 cycles of chemotherapy (T1), and before surgery (T2). The associations of these different types of CTCs with rates of pathological complete response (pCR) and breast-conserving surgery (BCS) were evaluated using the binary logistic regression analysis. RESULTS F-CTC in peripheral blood ≥1 at T0 was an independent factor for pCR rate in patients with HER2-positive (odds ratio [OR]=0.08, 95% confidence interval [CI], 0.01-0.98, P = .048). The reduction in the number of F-CTC at T2 was an independent factor for BCS rate (OR = 4.54, 95% CI, 1.14-18.08, P = .03). CONCLUSIONS The number of F-CTC prior to NAC was related to poor response to NAC. Monitoring of F-CTC may help clinicians formulate personalized NAC regimens and implement BCS for patients with non-metastatic breast cancer.
Collapse
Affiliation(s)
- Shijie Jia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yaping Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yingying Zhu
- Division of Clinical Research Design, Clinical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenqian Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yanghui Wei
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Xiaolin Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qun Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Jingbo Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Weige Tan
- Department of Breast Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuan Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Circulating Tumor Cell Detection by Liquid Biopsy during Early-Stage Endometrial Cancer Surgery: A Pilot Study. Biomolecules 2023; 13:biom13030428. [PMID: 36979364 PMCID: PMC10046537 DOI: 10.3390/biom13030428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The recurrence of non-metastatic endometrial carcinoma (EC) (6 to 21%) might be due to disseminated tumor cells. This feasibility study investigated whether circulating tumor cells (CTCs) were detectable in blood samples from the peripheral and ovarian veins of 10 patients undergoing laparoscopic resection of stage I-II EC between July 2019 and September 2021. CTCs were detected using the CellSearch® system (i) preoperatively (T0) in peripheral blood, (ii) after ovary suspensory ligament pediculation in ovarian vein blood (T1), and (iii) before colpotomy in peripheral blood (T2). CTCs were detected only in ovarian vein samples in 8/10 patients. The CTC median number did not differ with patient age (37 (min-max: 0–91) in <70-year-old vs. 11 (0–65) in ≥70 year-old women, p = 0.59), tumor grade (15 (0–72) for grade 1 vs. 15 (0–91) for grade 2, p = 0.97), FIGO stage (72 (27–91) vs. 2 (0–65) vs. 3 (0–6]) for stage IA, B, and II, respectively; p = 0.08), and tumor size (40 (2–72) for size < 30 mm vs. 4 (0–91) for size ≥ 30 mm, p = 0.39). Estrogen receptor-positive CTCs and CTC clusters were identified. The prognostic and therapeutic values of CTCs released during EC surgery need to be determined.
Collapse
|
5
|
Jin F, Zhu L, Shao J, Yakoub M, Schmitt L, Reißfelder C, Loges S, Benner A, Schölch S. Circulating tumour cells in patients with lung cancer universally indicate poor prognosis. Eur Respir Rev 2022; 31:31/166/220151. [PMID: 36517047 PMCID: PMC9879327 DOI: 10.1183/16000617.0151-2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In lung cancer, the relevance of various circulating tumour cell (CTC) subgroups in different lung cancer subtypes is unclear. We performed a comprehensive meta-analysis to assess the prognostic value of CTCs in the different histological types of lung cancer, with particular respect to CTC subtypes, cut-offs and time points of CTC enumeration. METHODS We searched MEDLINE, Web of Science and Embase alongside relevant studies evaluating the prognostic value of CTCs in lung cancer patients. A random-effects model was used for meta-analysis, calculating hazard ratios (HRs), 95% confidence intervals and p-values. RESULTS 27 studies enrolling 2957 patients were included. CTC detection indicates poor prognosis, especially in small cell lung cancer (SCLC) patients (overall survival HR 3.11, 95% CI 2.59-3.73) and predicts a worse outcome compared to nonsmall cell lung cancer patients. Epithelial CTCs predict a worse outcome for lung cancer than mesenchymal CTCs or epithelial-mesenchymal hybrids. CONCLUSION CTCs indicate poor prognosis in patients with primary lung cancer, with CTCs in SCLC having a more pronounced prognostic effect. The prognostic value of CTCs detected by different markers varies; most evidence is available for the strong negative prognostic effect of epithelial CTCs.
Collapse
Affiliation(s)
- Fukang Jin
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,These co-first authors contributed equally to this work
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,These co-first authors contributed equally to this work
| | - Jingbo Shao
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mina Yakoub
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lukas Schmitt
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Personalized Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Axel Benner
- Division of Biostatistics (C060), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Corresponding author: Sebastian Schölch ()
| |
Collapse
|
6
|
Wankhede D, Grover S, Hofman P. Circulating Tumor Cells as a Predictive Biomarker in Resectable Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14246112. [PMID: 36551601 PMCID: PMC9776809 DOI: 10.3390/cancers14246112] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background: In breast, prostate, and other epithelial tumors, circulating tumor cells (CTC) in peripheral blood may predict survival. Our study evaluated the prognostic significance of baseline and postoperative CTC in patients with early non-small cell lung cancer (NSCLC) through a meta-analytic approach. Methods: Prospective studies comparing survival outcomes between positive (CTC+) and negative CTC (CTC−) patients were systematically searched. Primary outcomes were overall (OS) and disease-free survival (DFS) with hazard ratio (HR) and 95% confidence interval (CI) as the effect measure. Pooled HR determined the prognostic role under a fixed-effect or random-effect model depending on heterogeneity. Results: Eighteen studies with 1321 patients were eligible. CTC+ patients were associated with an increased risk of death (HR 3.53, 95% CI 2.51−4.95; p < 0.00001) and relapse (HR 2.97, 95% CI 2.08−4.22; p < 0.00001). Subgroup analysis results were consistent in different subsets, including time points (baseline and postoperative) and sources (peripheral and pulmonary vein) of blood collection, detection methods (label-free, label-dependent, and RT-PCR), and follow-up duration. Conclusion: Our meta-analysis revealed that CTC is a promising predictive biomarker for stratifying survival outcomes in patients with early-stage NSCLC. However, future studies are required to validate these findings and standardize detection methods.
Collapse
Affiliation(s)
- Durgesh Wankhede
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
- Correspondence:
| | - Sandeep Grover
- Center for Human Genetics, Universitatsklinikum Giessen und Marburg—Standort Marburg, 35055 Marburg, Germany
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, CHU Nice, FHU OncoAge, University Côte d’Azur, 06100 Nice, France
- Team 4, IRCAN, UMR 7284/U10181, FHU OncoAge, University Côte d’Azur, 06107 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), CHU Nice, FHU OncoAge, University Côte d’Azur, 06100 Nice, France
- European Liquid Biopsy Society, Martinistrasse 52 Building N27 Room 4.003, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Qiao X, Zhao F. Long non-coding RNA Opa interacting protein 5-antisense RNA 1 binds to micorRNA-34a to upregulate oncogenic PD-L1 in non-small cell lung cancer. Bioengineered 2022; 13:9264-9273. [PMID: 35411833 PMCID: PMC9161958 DOI: 10.1080/21655979.2022.2036904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA) OPA-interacting protein 5 antisense transcript 1 (OIP5-AS1) plays an oncogenic role in several types of cancer, but whether it is involved in non-small-cell lung cancer (NSCLC) is unclear. Our preliminary sequencing analysis revealed the upregulation of OIP5-AS1 in NSCLC. In this study, gene expression levels were analyzed by RT-qPCR. RNA-RNA pull-down assay was applied to detect direct interactions between RNAs. Overexpression assays were performed to explore the relationship between miR-34a and OIP5-AS1. CCK-8 assay and colony formation assay were applied to evaluate cell proliferation. In NSCLC cells (H23), overexpression of OIP5-AS1 increased the expression levels of programmed death-ligand 1 (PD-L1). In addition, inhibition of OIP5-AS1 and overexpression of miR-34a decreased the expression levels of PD-L1, and miR-34a significantly blocked the role of overexpression of OIP5-AS1. Overexpression of OIP5-AS1 and PD-L1 promoted H23 and H22 cells proliferation, while silencing of miR-34a and OIP5-AS1 played opposite roles and eliminated the effects of overexpression of OIP5-AS1 on cell proliferation. Therefore, OIP5-AS1 was upregulated to enhance the expression of oncogenic PD-L1 by sponging miR-34a in NSCLC, leading to promoted NSCLC cell proliferation. Our study also demonstrated that OIP5-AS1 was upregulated while miR-34a was downregulated in NSCLC.
Collapse
Affiliation(s)
- Xinwei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Feng Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
8
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
9
|
Waldeck S, Mitschke J, Wiesemann S, Rassner M, Andrieux G, Deuter M, Mutter J, Lüchtenborg AM, Kottmann D, Titze L, Zeisel C, Jolic M, Philipp U, Lassmann S, Bronsert P, Greil C, Rawluk J, Becker H, Isbell L, Müller A, Doostkam S, Passlick B, Börries M, Duyster J, Wehrle J, Scherer F, von Bubnoff N. Early assessment of circulating tumor DNA after curative-intent resection predicts tumor recurrence in early-stage and locally advanced non-small-cell lung cancer. Mol Oncol 2021; 16:527-537. [PMID: 34653314 PMCID: PMC8763652 DOI: 10.1002/1878-0261.13116] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022] Open
Abstract
Circulating tumor DNA (ctDNA) has demonstrated great potential as a noninvasive biomarker to assess minimal residual disease (MRD) and profile tumor genotypes in patients with non‐small‐cell lung cancer (NSCLC). However, little is known about its dynamics during and after tumor resection, or its potential for predicting clinical outcomes. Here, we applied a targeted‐capture high‐throughput sequencing approach to profile ctDNA at various disease milestones and assessed its predictive value in patients with early‐stage and locally advanced NSCLC. We prospectively enrolled 33 consecutive patients with stage IA to IIIB NSCLC undergoing curative‐intent tumor resection (median follow‐up: 26.2 months). From 21 patients, we serially collected 96 plasma samples before surgery, during surgery, 1–2 weeks postsurgery, and during follow‐up. Deep next‐generation sequencing using unique molecular identifiers was performed to identify and quantify tumor‐specific mutations in ctDNA. Twelve patients (57%) had detectable mutations in ctDNA before tumor resection. Both ctDNA detection rates and ctDNA concentrations were significantly higher in plasma obtained during surgery compared with presurgical specimens (57% versus 19% ctDNA detection rate, and 12.47 versus 6.64 ng·mL−1, respectively). Four patients (19%) remained ctDNA‐positive at 1–2 weeks after surgery, with all of them (100%) experiencing disease progression at later time points. In contrast, only 4 out of 12 ctDNA‐negative patients (33%) after surgery experienced relapse during follow‐up. Positive ctDNA in early postoperative plasma samples was associated with shorter progression‐free survival (P = 0.013) and overall survival (P = 0.004). Our findings suggest that, in early‐stage and locally advanced NSCLC, intraoperative plasma sampling results in high ctDNA detection rates and that ctDNA positivity early after resection identifies patients at risk for relapse.
Collapse
Affiliation(s)
- Silvia Waldeck
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Mitschke
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Wiesemann
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Rassner
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Max Deuter
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jurik Mutter
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne-Marie Lüchtenborg
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Kottmann
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laurin Titze
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Zeisel
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martina Jolic
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Philipp
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Lassmann
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Greil
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justyna Rawluk
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Isbell
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra Müller
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soroush Doostkam
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernward Passlick
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Börries
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julius Wehrle
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
10
|
Zhang F, Wu X, Zhu J, Huang Y, Song X, Jiang L. 18F-FDG PET/CT and circulating tumor cells in treatment-naive patients with non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2021; 48:3250-3259. [PMID: 33630146 DOI: 10.1007/s00259-021-05260-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE This study retrospectively investigated the clinical utility of 2-deoxy-18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) and circulating tumor cells (CTCs) in the diagnosis and prognosis of treatment-naive patients with non-small-cell lung cancer (NSCLC). METHODS The blood samples of treatment-naive patients with NSCLC were collected for CTCs detection, and the tumor metabolic parameters of 18F-FDG PET/CT, including maximum standard uptake value (SUVmax), metabolic tumor volume of primary lesion (MTV-P) and combination of primary lesion and metastases (MTV-C), and total lesion glycolysis of primary lesion (TLG-P) and combination of primary lesion and metastases (TLG-C), were analyzed. Age, sex, smoking, serum tumor markers, tumor size, location, TNM stage, and genetic mutations were also reviewed. Moreover, progression-free survival (PFS) and overall survival (OS) of these patients were analyzed. RESULTS A total of 309 patients with NSCLC (200 men, 109 women; mean age: 61 ± 9 years) were enrolled in this study, including 217 patients with adenocarcinoma and 92 with squamous cell carcinoma. Of the 309 cases, 11 were misdiagnosed with benign diseases by 18F-FDG PET/CT. CTCs positivity was detected in 234 cases. The sensitivity of 18F-FDG PET/CT and CTCs in NSCLC were 96.4% and 75.7%, respectively. SUVmax, MTV-P, TLG-P, MTV-C, TLG-C, tumor size, and serum CYFRA211 levels were significantly higher in CTCs positive group than negative group; and advanced TNM stage, squamous cell carcinoma, and EGFR wild type presented higher CTCs positivity. Multivariate logistic regression analysis revealed that SUVmax was significantly associated with CTCs positivity. Multivariate cox regression analysis showed that TLG-P, TLG-C, and CTCs were independent predictors of PFS in patients with NSCLC, and TLG-C and CTCs were independent predictors of OS. CONCLUSIONS 18F-FDG PET/CT was superior to CTCs in the diagnosis of treatment-naive patients with NSCLC. The levels of CTCs in the peripheral blood were associated with tumor glucose metabolism in NSCLC. Metabolic parameters of 18F-FDG PET/CT and CTCs could separately predict the outcomes of treatment-naive patients with NSCLC.
Collapse
Affiliation(s)
- Fengxian Zhang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Xiaodong Wu
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Yan Huang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China.
| | - Lei Jiang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
11
|
Poggiana C, Rossi E, Zamarchi R. Possible role of circulating tumor cells in early detection of lung cancer. J Thorac Dis 2020; 12:3821-3835. [PMID: 32802464 PMCID: PMC7399415 DOI: 10.21037/jtd.2020.02.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prognosis of lung cancer varies highly depending on the disease stage at diagnosis, from a 5-year survival rate close to 90% in stage I, to 10% or less in stage IV disease. The enhancement of early diagnosis of this malignancy is mandatory to improve prognosis, because lung cancer patients stay long asymptomatic or few symptomatic after disease onset. Nowadays, liquid biopsy has emerged as a minimally-invasive tool to address the urgent need for real time monitoring, stratification, and personalized treatment of malignancies, including lung cancer. Liquid biopsy refers to a class of biomarkers, including circulating tumor cells (CTCs), cell-free circulating tumor DNA (ctDNA) and tumor-derived extracellular vesicles (tdEV). Since CTCs represent a crucial step in disease progression and metastasis, we reviewed here the scientific literature about the use of CTCs in early diagnosis of lung cancer; different techniques, and different strategies (e.g., source of analysis sample or high-risk groups of patients) were discussed showing the potential of implementing liquid biopsy in the clinical routine of non-metastatic lung cancer.
Collapse
Affiliation(s)
| | - Elisabetta Rossi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
12
|
Mao C, Deng B. [Research Advances in the Mechanism of Invasion and Metastasis of Circulating Tumor Cells in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:189-195. [PMID: 32102136 PMCID: PMC7118339 DOI: 10.3779/j.issn.1009-3419.2020.03.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
近年来,随着液体活检技术兴起,循环肿瘤细胞(circulating tumor cell, CTC)在癌症患者的早期诊断、疗效评估及预后评价等方面显示出重要的价值。CTC的产生导致肿瘤发生远处转移及患者的预后不良。因此,阐明CTC的产生、进入循环系统及其免疫逃逸的机制尤为重要。目前,精准诊疗成为提高肺癌患者预后的重要努力方向。针对肺癌CTC有望为肺癌精准诊疗提供有力的理论依据与重要手段。现对上述热点问题的最新研究进展进行综述。
Collapse
Affiliation(s)
- Chunguo Mao
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bo Deng
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
13
|
Dong J, Zhu D, Tang X, Qiu X, Lu D, Li B, Lin D, Zhou Q. Detection of Circulating Tumor Cell Molecular Subtype in Pulmonary Vein Predicting Prognosis of Stage I-III Non-small Cell Lung Cancer Patients. Front Oncol 2019; 9:1139. [PMID: 31737568 PMCID: PMC6830362 DOI: 10.3389/fonc.2019.01139] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/11/2019] [Indexed: 02/05/2023] Open
Abstract
Background: There was rare studies on prognosis of pulmonary venous CTC and early or advanced NSCLC patients. We want to investigate whether CTCs and the subtype of it can predict the prognosis of NSCLC patients. Patients and Methods: One hundred and fourteen patients with stage I-III NSCLC were included CanPatrol™ CTC analysis. PD-L1 expression level were detected in CTC of pulmonary vein. PD-L1, number of CTC in pulmonary, CTC's subtype, clinical characteristics, prognosis of patients were analyzed. Results: 110/114 (96.5%) patients could be found CTCs in pulmonary vein, 58/114 (50.9%) patients had CTC≥15/ml in pulmonary vein, 53/110 patients (48.2%) were defined as having MCTC subtype and 56/110 patient were found have PD-L1 (+) CTC in pulmonary vein. Multivariate analyses showed that PVCTC, MCTC, and stage were independent factors of DFS (P < 0.05). No OS difference was found between number of CTC (P = 0.33) and other CTC factors (P > 0.05), only stage was independent factor of OS (P = 0.019). There were decreases of CTC number and MCTC number in EGFR mutant subgroup (P = 0.0009 and P = 0.007). There were increases of CTC (P = 0.0217), MCTC (P = 0.0041), and PD-L1 (+) CTC (P = 0.0002) number in KRAS mutant subgroup. There was increase of MCTC (P =0.0323) number in BRAF mutant. There were fewer CTCs in pulmonary vein for patients with EGFR mutant than in patients with full wild-type gene (P = 0.0346). There were more PD-L1 positive CTCs in pulmonary vein for patients with ALK rearrangement, KRAS mutant, BRAF mutant, or ROS1 mutant than in patients with full wild-type gene (P = 0.0610, P = 0.0003, P = 0.032, and P = 0.0237). There were more mesenchymal CTCs in pulmonary vein for patients with KRAS mutant and BRAF mutant than in patients with full wild-type gene (P = 0.073 and P = 0.0381). There were fewer mesenchymal CTCs in pulmonary vein for patients with EGFR mutant than in patients with full wild-type gene (P = 0.0898). Conclusions: The patients with high number of CTCs, MCTCs, or PD-L1 (+) CTCs in pulmonary vein experienced poor prognosis of DFS. There are obvious correlations between the CTC subtype of NSCLC and the gene subgroups of tumor tissue.
Collapse
Affiliation(s)
- Jingsi Dong
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Daxing Zhu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Tang
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Qiu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Lu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingjie Li
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Lin
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Zhou
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Rao L, Luo L, Luo L, Chen S, Ran R, Liu X. Identification of plasma exosomes long non-coding RNA HAGLR and circulating tumor cells as potential prognosis biomarkers in non-small cell lung cancer. Transl Cancer Res 2019; 8:2264-2273. [PMID: 35116979 PMCID: PMC8797654 DOI: 10.21037/tcr.2019.09.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/12/2019] [Indexed: 12/03/2022]
Abstract
Background The main purpose of this study was to identify the correlation between the expression of long non-coding RNA (lncRNA) HAGLR in plasma exosomes and the detection rate of circulating tumor cells (CTCs) in patients with non-small cell lung cancer (NSCLC). Methods LncRNA HAGLR expression was detected in plasma exosomes of 40 patients with NSCLC and 8 healthy subjects using qRT-PCR. CTCs were enriched and separated using CTC-BIOPSY® abnormal cell separator. The correlations between lncRNA HAGLR expression in plasma exosomes and CTCs of patients with NSCLC and clinical pathological parameters were also analyzed. Bioinformatics analyses indicated HAGLR was evidently down-regulated in NSCLC tissues when compared to normal controls. The relationship between differential expression of HAGLR with different stages of NSCLC and clinical prognosis were elucidated using corresponding statistical methods. Results HAGLR was significantly decreased in NSCLC, and there was obvious correlation with overall survival (P<0.05). CTCs were detected in peripheral blood of patients with NSCLC with the positive rate of 70.0%. In lung squamous cell carcinoma (LUSC), compared with the high expression group of HAGLR, the low expression group had a better overall survival (P<0.05). At the same time, the high expression of HAGLR was positively correlated with the high detection rate of CTCs (P<0.05), suggesting that the disease may have a later tumor stage, and poor prognosis. Conclusions lncRNA HAGLR and CTCs could be used as potential biomarkers for NSCLC metastasis risk prediction.
Collapse
Affiliation(s)
- Le Rao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lihua Luo
- Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, China
| | - Liufang Luo
- Department of Pediatrics, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, China
| | - Shan Chen
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ruizhi Ran
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|