1
|
Chen Z, Zhang S, Fang A, Shao J, Shen H, Sun B, Guo G, Liu L. Early changes in left ventricular myocardial function by 2D speckle tracking layer-specific technique in neonates with hyperbilirubinemia. Quant Imaging Med Surg 2022; 12:796-809. [PMID: 34993119 DOI: 10.21037/qims-21-197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
Background Hyperbilirubinemia (HBN) can cause myocardial injury in neonates. Advancement in myocardial deformation imaging allows the detection of subclinical changes in myocardial contractility. The present study aimed to evaluate the changes in left ventricular contractility in newborns with hyperbilirubinemia by 2D speckle tracking imaging (STI). Methods A group of 134 neonates who reached the diagnostic level of HBN as the HBN group was selected. The control group included 56 healthy newborns. The interventricular septum, anterior partition, anterior wall, sidewall, posterior wall, and inferior wall were separated into the basal, middle, and apical segments. In each segment, speckle tracking analysis was performed in the subintimal, middle, and subadventitial myocardium. The overall longitudinal strain of the myocardium in different ventricular walls and segments and global longitudinal strain (GLS) were computed. At the same time, the laboratory results of blood gas analysis, blood routine tests, liver function, and myocardial enzyme spectrum in HBN neonates were collected and correlated with the left ventricular stratified strain parameters. Results The gradient of the left ventricular GLS had the same characteristics in both groups of newborns. There was a decreasing trend of longitudinal strain (LS) from the intima to the adventitia (i.e., GLSendo > GLSmid > GLSepi). This gradient was also present in stratified LS in each myocardial segment (P<0.001). The LS showed an increasing trend from the basal to the apical segment (P<0.001). The LS of the ventricular septum, anterior wall (or anterior septum), inferior wall, lateral wall, and posterior wall showed a decreasing trend (P<0.001). Stratified strain parameters of the ventricular wall (i.e., the 3-layer myocardium: LSendo-SEPT, LSmid-SEPT, and LSepi-SEPT) were all significantly lower in the HBN group than in the control group (P=0.019, P=0.019, and P=0.023, respectively). LSedo-ANT, LSmid-ANT, and LSepi-ANT were also reduced, and the difference between LSendo-ANT and LSepi-ANT was statistically significant. The segmental stratified strain parameters (i.e., the apical 3-layer myocardium: LSepi-a, LSmid-a, and LSepi-a) decreased, and the difference in LSepi-a was statistically significant (P=0.043). Overall strain parameters (i.e., the 3-layer myocardial overall strain: GLSendo, GLSmid, and GLSepi) were reduced, but the difference was not statistically significant (P=0.612, P=0.653, and P=0.585, respectively). The subclinical changes in systolic function in the HBN group, reflected by the parameters of longitudinal myocardial strain, correlate to some extent with multiple results of laboratory tests. Conclusions 2DSTI stratified strain technology can quantitively evaluate changes in the LS of the left ventricle in different ventricular walls, wall segments, and layers of the myocardium.
Collapse
Affiliation(s)
- Zimian Chen
- Department of Ultrasound Diagnosis, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Ultrasound Diagnosis, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Suming Zhang
- Department of Ultrasound Diagnosis, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Ultrasound Diagnosis, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Aijuan Fang
- Department of Ultrasound Diagnosis, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Ultrasound Diagnosis, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Jun Shao
- Department of Ultrasound Diagnosis, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Ultrasound Diagnosis, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Hong Shen
- Department of Ultrasound Diagnosis, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Ultrasound Diagnosis, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Bugao Sun
- Department of Ultrasound Diagnosis, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Ultrasound Diagnosis, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Guanjun Guo
- Department of Ultrasound Diagnosis, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Ultrasound Diagnosis, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Lei Liu
- Department of Ultrasound Diagnosis, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Ultrasound Diagnosis, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Deng L, Zuo H, Li A, Yang C, Huang X. Numerical Simulation Study on the Mechanism of Formation of Apical Aneurysm in Hypertrophic Cardiomyopathy With Midventricular Obstruction. Front Physiol 2021; 12:717717. [PMID: 34366902 PMCID: PMC8334850 DOI: 10.3389/fphys.2021.717717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Apical aneurysm was observed to be associated with midventricular obstruction (MVO) in hypertrophic cardiomyopathy (HCM). To investigate the genesis of the apical aneurysm, the idealized numerical left ventricular models (finite-element left ventricle models) of the healthy left ventricle, subaortic obstruction, and midventricular obstruction in HCM of left ventricle were created. The mechanical effects in the formation of apical aneurysm were determined by comparing the myofiber stress on the apical wall between these three models (healthy, subaortic obstruction, and midventricular obstruction models). In comparing the subaortic obstruction model and MVO model with HCM, it was found that, at the time of maximum pressure, the maximum value of myofiber stress in MVO model was 75.0% higher than that in the subaortic obstruction model (654.5 kPa vs. 373.9 kPa). The maximum stress on the apex of LV increased 79.9, 69.3, 117.8% than that on the myocardium around the apex in healthy model, subaortic obstruction model, and MVO model, respectively. Our results indicated that high myofiber stress on the apical wall might initiate the formation process of the apical aneurysm.
Collapse
Affiliation(s)
- Long Deng
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Heng Zuo
- School of Mathematical Sciences, Sichuan Normal University, Chengdu, China
| | - An Li
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Chun Yang
- Network Technology Research Institute, China United Network Communications Co., Ltd., Beijing, China
| | - Xueying Huang
- School of Mathematical Sciences, Xiamen University, Xiamen, China.,Department of Mathematics, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
3
|
Huang X, Deng L, Zuo H, Yang C, Song Y, Lesperance M, Tang D. Comparisons of simulation results between passive and active fluid structure interaction models for left ventricle in hypertrophic obstructive cardiomyopathy. Biomed Eng Online 2021; 20:9. [PMID: 33436013 PMCID: PMC7805207 DOI: 10.1186/s12938-020-00838-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patient-specific active fluid-structure interactions (FSI) model is a useful approach to non-invasively investigate the hemodynamics in the heart. However, it takes a lot of effort to obtain the proper external force boundary conditions for active models, which heavily restrained the time-sensitive clinical applications of active computational models. METHODS The simulation results of 12 passive FSI models based on 6 patients' pre-operative and post-operative CT images were compared with corresponding active models to investigate the differences in hemodynamics and cardiac mechanics between these models. RESULTS In comparing the passive and active models, it was found that there was no significant difference in pressure difference and shear stress on mitral valve leaflet (MVL) at the pre-SAM time point, but a significant difference was found in wall stress on the inner boundary of left ventricle (endocardium). It was also found that pressure difference on the coapted MVL and the shear stress on MVL were significantly decreased after successful surgery in both active and passive models. CONCLUSION Our results suggested that the passive models may provide good approximated hemodynamic results at 5% RR interval, which is crucial for analyzing the initiation of systolic anterior motion (SAM). Comparing to active models, the passive models decrease the complexity of the modeling construction and the difficulty of convergence significantly. These findings suggest that, with proper boundary conditions and sufficient clinical data, the passive computational model may be a good substitution model for the active model to perform hemodynamic analysis of the initiation of SAM.
Collapse
Affiliation(s)
- Xueying Huang
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Long Deng
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Heng Zuo
- School of Mathematical Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Chun Yang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Network Technology Research Institute, China United Network Communications Co., Ltd., Beijing, China
| | - Yunhu Song
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mary Lesperance
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Dalin Tang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Yu H, Del Nido PJ, Geva T, Yang C, Wu Z, Rathod RH, Huang X, Billiar KL, Tang D. Multi-Band Surgery for Repaired Tetralogy of Fallot Patients With Reduced Right Ventricle Ejection Fraction: A Pilot Study. Front Physiol 2020; 11:198. [PMID: 32265727 PMCID: PMC7103653 DOI: 10.3389/fphys.2020.00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Right ventricle (RV) failure is one of the most common symptoms among patients with repaired tetralogy of Fallot (TOF). The current surgery treatment approach including pulmonary valve replacement (PVR) showed mixed post-surgery outcomes. A novel PVR surgical strategy using active contracting bands is proposed to improve the post-PVR outcome. In lieu of testing the risky surgical procedures on real patients, computational simulations (virtual surgery) using biomechanical ventricle models based on patient-specific cardiac magnetic resonance (CMR) data were performed to test the feasibility of the PVR procedures with active contracting bands. Different band combination and insertion options were tested to identify optimal surgery designs. Method Cardiac magnetic resonance data were obtained from one TOF patient (male, age 23) whose informed consent was obtained. A total of 21 finite element models were constructed and solved following our established procedures to investigate the outcomes of the band insertion surgery. The non-linear anisotropic Mooney–Rivlin model was used as the material model. Five different band insertion plans were simulated (three single band models with different band locations, one model with two bands, and one model with three bands). Three band contraction ratios (10, 15, and 20%) and passive bands (0% contraction ratio) were tested. RV ejection fraction was used as the measure for cardiac function. Results The RV ejection fraction from the three-band model with 20% contraction increased to 41.58% from the baseline of 37.38%, a 4.20% absolute improvement. The RV ejection fractions from the other four band models with 20% contraction rate were 39.70, 39.45, and 40.70% (two-band) and 39.17%, respectively. The mean RV stress and strain values from all of the 21 models showed only modest differences (5–11%). Conclusion This pilot study demonstrated that the three-band model with 20% band contraction ratio led to 4.20% absolute improvement in the RV ejection fraction, which is considered as clinically significant. The passive elastic bands led to the reduction of the RV ejection fractions. The modeling results and surgical strategy need to be further developed and validated by a multi-patient study and animal experiments before clinical trial could become possible. Tissue regeneration techniques are needed to produce materials for the contracting bands.
Collapse
Affiliation(s)
- Han Yu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Tal Geva
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Chun Yang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Zheyang Wu
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Rahul H Rathod
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Xueying Huang
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|