1
|
Padayao MHR, Padayao FRP, Patalinghug JM, Raña GS, Yee J, Geraldino PJ, Quilantang N. Antimicrobial and quorum sensing inhibitory activity of epiphytic bacteria isolated from the red alga Halymenia durvillei. Access Microbiol 2023; 5:000563.v4. [PMID: 38188234 PMCID: PMC10765052 DOI: 10.1099/acmi.0.000563.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Halymenia durvillei is a red alga that is commonly utilized in the Philippines as food and as a source of high-value natural products for industrial applications. However, there are no studies regarding the microbial community associated with H. durvillei and its potential applications. This study aimed to isolate and identify the epiphytic bacteria of H. durvillei and determine their antimicrobial and quorum sensing inhibitory (QSI) effects. The thalli of H. durvillei were collected at the shores of Santa Fe, Bantayan, Cebu, Philippines. Bacterial isolates were identified using 16S rRNA, and their ethyl acetate (EtOAc) extracts were subjected to antimicrobial susceptibility tests against representative species of yeast and Gram-negative and Gram-positive bacteria. Their QSI activity against Chromobacterium violaceum was also determined. Fourteen distinct bacterial colonies belonging to four genera, namely Alteromonas (3), Bacillus (5), Oceanobacillus (1) and Vibrio (5), were successfully isolated and identified. All 14 bacterial isolates exhibited antibacterial effects. EPB9, identified as Bacillus safensis , consistently showed the strongest inhibition against Escherichia coli , Staphylococcus aureus and Staphylococcus epidermidis , with minimum inhibitory concentrations (MICs) ranging from 0.0625 to 1.0 mg ml-1. In contrast, all 14 isolates showed weak antifungal effects. Both B. safensis (EPB9) and Bacillus australimaris (EPB15) exhibited QSI effects at 100 mg ml-1, showing opaque zones of 3.1±0.9 and 3.8±0.4 mm, respectively. This study is the first to isolate and identify the distinct microbial epiphytic bacterial community of H. durvillei and its potential as an abundant resource for new antibacterial and QSI bioactives.
Collapse
Affiliation(s)
- Mary Hannah Rose Padayao
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Francis Reuben Paul Padayao
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Jenny Marie Patalinghug
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Gem Stephen Raña
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Jonie Yee
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Paul John Geraldino
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Norman Quilantang
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| |
Collapse
|
2
|
Lei LY, Xiong ZX, Li JL, Yang DZ, Li L, Chen L, Zhong QF, Yin FY, Li RX, Cheng ZQ, Xiao SQ. Biological control of Magnaporthe oryzae using natively isolated Bacillus subtilis G5 from Oryza officinalis roots. Front Microbiol 2023; 14:1264000. [PMID: 37876784 PMCID: PMC10591090 DOI: 10.3389/fmicb.2023.1264000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production causing significant crop losses and impacting grain quality. The annual loss of rice production due to this disease ranges from 10% to 30%. The use of biologically controlled strains, instead of chemical pesticides, to control plant diseases has become a research hotspot. In this study, an antagonistic endophytic bacterial strain was isolated from the roots of Oryza officinalis using the traditional isolation and culture methods. A phylogenetic tree based on 16S RNA and whole-genome sequencing identified isolate G5 as a strain of Bacillus subtilis. This isolate displayed strong antagonistic effects against different physiological strains of M. oryzae. After co-culture in LB medium for 7 days, the inhibition rates of the mycelial growth of four strains of M. oryzae, ZB15, WH97, Guy11, and T-39800E were 98.07 ± 0.0034%, 98.59 ± 0.0051%, 99.16 ± 0.0012%, and 98.69 ± 0.0065%, respectively. Isolate G5 significantly inhibited the formation of conidia of M. oryzae, with an inhibition rate of 97% at an OD600 of 2. Isolate G5 was able to provide 66.81% protection against rice blast under potted conditions. Whole-genome sequencing revealed that the genome size of isolate G5 was 4,065,878 bp, including 4,182 coding genes. Using the anti-SMASH software, 14 secondary metabolite synthesis gene clusters were predicted to encode antifungal substances, such as fengycin, surfactin, and bacilysin. The G5 isolate also contained genes related to plant growth promotion. These findings provide a theoretical basis for expounding the biocontrol mechanisms of this strain and suggest further development of biogenic agents that could effectively inhibit rice blast pathogen growth and reduce crop damage, while being environmentally friendly, conducive to ecological development, and a sustainable alternative to chemical pesticides. This study also enriches the relevant research on endophytes of wild rice, which proves that wild rice is a valuable microbial resource bank.
Collapse
Affiliation(s)
- Ling-Yun Lei
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Zi-Xuan Xiong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jin-Lu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - De-Zheng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Liu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qiao-Fang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fu-You Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Rong-Xin Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Zai-Quan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Su-Qin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
3
|
Yang Y, Zhang Y, Zhang L, Zhou Z, Zhang J, Yang J, Gao X, Chen R, Huang Z, Xu Z, Li L. Isolation of Bacillus siamensis B-612, a Strain That Is Resistant to Rice Blast Disease and an Investigation of the Mechanisms Responsible for Suppressing Rice Blast Fungus. Int J Mol Sci 2023; 24:ijms24108513. [PMID: 37239859 DOI: 10.3390/ijms24108513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Rice yield can be significantly impacted by rice blast disease. In this investigation, an endophytic strain of Bacillus siamensis that exhibited a potent inhibitory effect on the growth of rice blast was isolated from healthy cauliflower leaves. 16S rDNA gene sequence analysis showed that it belongs to the genus Bacillus siamensis. Using the rice OsActin gene as an internal control, we analyzed the expression levels of genes related to the defense response of rice. Analysis showed that the expression levels of genes related to the defense response in rice were significantly upregulated 48 h after treatment. In addition, peroxidase (POD) activity gradually increased after treatment with B-612 fermentation solution and peaked 48 h after inoculation. These findings clearly demonstrated that the 1-butanol crude extract of B-612 retarded and inhibited conidial germination as well as the development of appressorium. The results of field experiments showed that treatment with B-612 fermentation solution and B-612 bacterial solution significantly reduced the severity of the disease before the seedling stage of Lijiangxintuan (LTH) was infected with rice blast. Future studies will focus on exploring whether Bacillus siamensis B-612 produces new lipopeptides and will apply proteomic and transcriptomic approaches to investigate the signaling pathways involved in its antimicrobial effects.
Collapse
Affiliation(s)
- Yanmei Yang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Luyi Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhanmei Zhou
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinchang Yang
- Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoling Gao
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Rongjun Chen
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjian Huang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Li
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Sinha T, Malakar C, Talukdar NC. Mustard seed–associated endophytes suppress Sclerotinia sclerotiorum causing Sclerotinia rot in mustard crop. Int Microbiol 2022:10.1007/s10123-022-00314-0. [PMID: 36542232 DOI: 10.1007/s10123-022-00314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Mustard-rapeseed cultivation is affected by Sclerotinia sclerotiorum resulting in loss of oil yield and degradation of crop quality. This study adopted an environment friendly biocontrol approach of screening mustard endophytes against the pathogen. Two bacterial isolates, Bacillus safensis (TS46 bac4) and Bacillus australimaris (SM2) showed potential biocontrol activity under both in vitro and in vivo conditions. Dual culture assay reported 90% inhibition of fungal growth. The bacterial cell free supernatant of isolate SM2 showed 52.89% inhibition and the other isolate TS46 bac4 showed 57.97% inhibition. The crude (10 mg/ml) and purified (10 mg/ml) metabolite extract of SM2 showed 100% and 97% inhibition respectively. Both crude (10 mg/ml) and purified (7.5 mg/ml) metabolite extract of TS46 bac4 exhibited 99% inhibition of the pathogen. Antifungal lipopeptides: surfactin, iturin and fengycin were identified in bacterial metabolite extract of the isolates. Both strains promoted healthy germination and prevented the formation of any disease symptoms in seedling. The selected Bacillus strains applied by spray method showed better results against fungal infection on mustard leaf and stem. Microscopic studies revealed degradation of fungal mycelial growth by both isolates. These findings support the employment of the bacterial strains as potential biocontrol agents to reduce the effects of S. sclerotiorum in mustard-rapeseed.
Collapse
|
5
|
Li L, Li Y, Lu K, Chen R, Jiang J. Bacillus subtilis KLBMPGC81 suppresses appressorium-mediated plant infection by altering the cell wall integrity signaling pathway and multiple cell biological processes in Magnaporthe oryzae. Front Cell Infect Microbiol 2022; 12:983757. [PMID: 36159636 PMCID: PMC9504064 DOI: 10.3389/fcimb.2022.983757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Magnaporthe oryzae is one of the most destructive crop pathogens in the world, causing huge losses in rice harvest every year. Bacillus subtilis is a potential biocontrol agent that has been explored in many crop systems because it is a potent producer of bioactive compounds. However, the mechanisms by which these agents control rice blasts are not fully understood. We show that B. subtilis KLBMPGC81 (KC81) and its supernatant (SUP) have high antimicrobial activity against M. oryzae strain Guy11. To better exploit KC81 as a biocontrol agent, the mechanism by which KC81 suppresses rice blast pathogens was investigated. This study shows that KC81 SUP is effective in controlling rice blast disease. The SUP has a significant effect on suppressing the growth of M. oryzae and appressorium-mediated plant infection. KC81 SUP compromises cell wall integrity, microtubules and actin cytoskeleton, mitosis, and autophagy, all of which are required for M. oryzae growth, appressorium development, and host infection. We further show that the SUP reduces the activity of the cyclin-dependent kinase Cdc2 by enhancing the phosphorylation of Cdc2 Tyr 15, thereby impairing mitosis in M. oryzae cells. SUP induces the cell wall sensor MoWsc1 to activate the cell wall integrity pathway and Mps1 and Pmk1 mitogen-activated protein kinases. Taken together, our findings reveal that KC81 is an effective fungicide that suppresses M. oryzae growth, appressorium formation, and host infection by abnormally activating the cell wall integrity pathway, disrupting the cytoskeleton, mitosis, and autophagy.
Collapse
|
6
|
Chen Z, Zhao L, Dong Y, Chen W, Li C, Gao X, Chen R, Li L, Xu Z. The antagonistic mechanism of Bacillus velezensis ZW10 against rice blast disease: Evaluation of ZW10 as a potential biopesticide. PLoS One 2021; 16:e0256807. [PMID: 34449822 PMCID: PMC8396770 DOI: 10.1371/journal.pone.0256807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the three major diseases affecting rice production and quality; it reduces rice grain yield by nearly 30%. In the early stage of this study, a strain of Bacillus velezensis with strong inhibition of M. oryzae was isolated and named ZW10. In vitro assays indicated prolonged germination time of conidia of M. oryzae treated with the antifungal substances of ZW10, 78% of the conidia could not form appressorium, and the conidial tubes expanded to form vacuolar structure and then shrank. The results of FDA-PI composite dyes showed that the antifungal substances of ZW10 inhibited the normal activity of M. oryzae hyphae that were rarely able to infect the epidermal cells of rice leaf sheath in vivo tests. In addition, rice treated with the antifungal substances of ZW10 showed a variety of defense responses, including activation of defense-related enzymes, increased expression of the salicylic acid pathway genes, and accumulation of hydrogen peroxide (H2O2), which might function directly or indirectly in resistance to pathogen attack. The field experiment with rice blast infection in different periods showed that the antifungal substances of ZW10 had the same control effect as carbendazim. The significant biological control activity of ZW10 and its capacity to stimulate host defenses suggest that this B. velezensis strain has the potential to be developed into a biopesticide for the biocontrol of rice blast.
Collapse
Affiliation(s)
- Zuo Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Lu Zhao
- Department of Bioengineering, Microbiology Laboratory of Sichuan Water Conservancy Vocational College, Dujiangyan, China
| | - Yilun Dong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenqian Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunliu Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaoling Gao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Rongjun Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Lihua Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|