1
|
Allison PF, Pickich ET, Barnett ZC, Garrick RC. DNA barcoding is currently unreliable for species identification in most crayfishes. Ecol Evol 2024; 14:e70050. [PMID: 39041008 PMCID: PMC11260883 DOI: 10.1002/ece3.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
DNA barcoding is commonly used for species identification. Despite this, there has not been a comprehensive assessment of the utility of DNA barcoding in crayfishes (Decapoda: Astacidea). Here we examined the extent to which local barcoding gaps (used for species identification) and global barcoding gaps (used for species discovery) exist among crayfishes, and whether global gaps met a previously suggested 10× threshold (mean interspecific difference being 10× larger than mean intra specific difference). We examined barcoding gaps using publicly available mitochondrial COI sequence data from the National Center for Biotechnology Information's nucleotide database. We created two versions of the COI datasets used for downstream analyses: one focused on the number of unique haplotypes (N H) per species, and another that focused on total number of sequences (N S; i.e., including redundant haplotypes) per species. A total of 81 species were included, with 58 species and five genera from the family Cambaridae and 23 species from three genera from the family Parastacidae. Local barcoding gaps were present in only 30 species (20 Cambaridae and 10 Parastacidae species). We detected global barcoding gaps in only four genera (Cambarus, Cherax, Euastacus, and Tenuibranchiurus), which were all below (4.2× to 5.2×) the previously suggested 10× threshold. We propose that a ~5× threshold would be a more appropriate working hypothesis for species discovery. While the N H and N S datasets yielded largely similar results, there were some discrepant inferences. To understand why some species lacked a local barcoding gap, we performed species delimitation analyses for each genus using the N H dataset. These results suggest that current taxonomy in crayfishes may be inadequate for the majority of examined species, and that even species with local barcoding gaps present may be in need of taxonomic revisions. Currently, the utility of DNA barcoding for species identification and discovery in crayfish is quite limited, and caution should be exercised when mitochondrial-based approaches are used in place of taxonomic expertise. Assessment of the evidence for local and global barcoding gaps is important for understanding the reliability of molecular species identification and discovery, but outcomes are dependent on the current state of taxonomy. As this improves (e.g., via resolving species complexes, possibly elevating some subspecies to the species-level status, and redressing specimen misidentifications in natural history and other collections), so too will the utility of DNA barcoding.
Collapse
Affiliation(s)
| | - Emily T. Pickich
- Department of BiologyUniversity of MississippiUniversityMississippiUSA
| | - Zanethia C. Barnett
- Southern Research StationUSDA Forest Service, Center for Bottomland Hardwoods ResearchClemsonSouth CarolinaUSA
| | - Ryan C. Garrick
- Department of BiologyUniversity of MississippiUniversityMississippiUSA
| |
Collapse
|
2
|
Samreen KB, Manzoor F. Assessing arthropod biodiversity with DNA barcoding in Jinnah Garden, Lahore, Pakistan. PeerJ 2024; 12:e17420. [PMID: 38832046 PMCID: PMC11146329 DOI: 10.7717/peerj.17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Previous difficulties in arthropod taxonomy (such as limitations in conventional morphological approaches, the possibility of cryptic species and a shortage of knowledgeable taxonomists) has been overcome by the powerful tool of DNA barcoding. This study presents a thorough analysis of DNA barcoding in regards to Pakistani arthropods, which were collected from Lahore's Jinnah Garden. The 88 % (9,451) of the 10,792 specimens that were examined were able to generate DNA barcodes and 83% (8,974) of specimens were assigned 1,361 barcode index numbers (BINs). However, the success rate differed significantly between the orders of arthropods, from 77% for Thysanoptera to an astounding 93% for Diptera. Through morphological exams, DNA barcoding, and cross-referencing with the Barcode of Life Data system (BOLD), the Barcode Index Numbers (BINs) were assigned with a high degree of accuracy, both at the order (100%) and family (98%) levels. Though, identifications at the genus (37%) and species (15%) levels showed room for improvement. This underscores the ongoing need for enhancing and expanding the DNA barcode reference library. This study identified 324 genera and 191 species, underscoring the advantages of DNA barcoding over traditional morphological identification methods. Among the 17 arthropod orders identified, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera from the class Insecta dominated, collectively constituting 94% of BINs. Expected malaise trap Arthropod fauna in Jinnah Garden could contain approximately 2,785 BINs according to Preston log-normal species distribution, yet the Chao-1 Index predicts 2,389.74 BINs. The Simpson Index of Diversity (1-D) is 0.989, signaling high species diversity, while the Shannon Index is 5.77, indicating significant species richness and evenness. These results demonstrated that in Pakistani arthropods, DNA barcoding and BOLD are an invaluable tool for improving taxonomic understanding and biodiversity assessment, opening the door for further eDNA and metabarcoding research.
Collapse
Affiliation(s)
- Khush Bakhat Samreen
- Department of Zoology, Lahore College for Women University, Lahore, Lahore, Pakistan
| | | |
Collapse
|
3
|
Ashfaq M, Khan AM, Rasool A, Akhtar S, Nazir N, Ahmed N, Manzoor F, Sones J, Perez K, Sarwar G, Khan AA, Akhter M, Saeed S, Sultana R, Tahir HM, Rafi MA, Iftikhar R, Naseem MT, Masood M, Tufail M, Kumar S, Afzal S, McKeown J, Samejo AA, Khaliq I, D’Souza ML, Mansoor S, Hebert PDN. A DNA barcode survey of insect biodiversity in Pakistan. PeerJ 2022; 10:e13267. [PMID: 35497186 PMCID: PMC9048642 DOI: 10.7717/peerj.13267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 01/15/2023] Open
Abstract
Although Pakistan has rich biodiversity, many groups are poorly known, particularly insects. To address this gap, we employed DNA barcoding to survey its insect diversity. Specimens obtained through diverse collecting methods at 1,858 sites across Pakistan from 2010-2019 were examined for sequence variation in the 658 bp barcode region of the cytochrome c oxidase 1 (COI) gene. Sequences from nearly 49,000 specimens were assigned to 6,590 Barcode Index Numbers (BINs), a proxy for species, and most (88%) also possessed a representative image on the Barcode of Life Data System (BOLD). By coupling morphological inspections with barcode matches on BOLD, every BIN was assigned to an order (19) and most (99.8%) were placed to a family (362). However, just 40% of the BINs were assigned to a genus (1,375) and 21% to a species (1,364). Five orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera) accounted for 92% of the specimens and BINs. More than half of the BINs (59%) are so far only known from Pakistan, but others have also been reported from Bangladesh (13%), India (12%), and China (8%). Representing the first DNA barcode survey of the insect fauna in any South Asian country, this study provides the foundation for a complete inventory of the insect fauna in Pakistan while also contributing to the global DNA barcode reference library.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Arif M. Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Akhtar Rasool
- Centre for Animal Sciences and Fisheries, University of Swat, Mingora, Pakistan
| | - Saleem Akhtar
- Directorate of Entomology, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naila Nazir
- Department of Entomology, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Nazeer Ahmed
- Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Farkhanda Manzoor
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Jayme Sones
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | - Kate Perez
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | - Ghulam Sarwar
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Azhar A. Khan
- College of Agriculture, Bahauddin Zakariya University Bahadur Campus, Layyah, Pakistan
| | - Muhammad Akhter
- Pulses Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shafqat Saeed
- Faculty of Agriculture and Environmental Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Riffat Sultana
- Department of Zoology, University of Sindh, Jamshoro, Pakistan
| | | | - Muhammad A. Rafi
- National Insect Museum, National Agricultural Research Center, Islamabad, Pakistan
| | - Romana Iftikhar
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | - Mariyam Masood
- Government College Women University Faisalabad, Faisalabad, Pakistan
| | | | - Santosh Kumar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Sabila Afzal
- Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Jaclyn McKeown
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | | | | | | | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
4
|
Umina PA, Reidy-Crofts J, Edwards O, Chirgwin E, Ward S, Maino J, Babineau M. Susceptibility of the Cowpea Aphid (Hemiptera: Aphididae) to Widely Used Insecticides in Australia. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:143-150. [PMID: 35139214 DOI: 10.1093/jee/toab210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 06/14/2023]
Abstract
Globally, 27 aphid species have evolved resistance to almost 100 insecticide active ingredients. A proactive approach to resistance management in pest aphids is needed; this should include risk analysis, followed by regular baseline susceptibility assays for species deemed at high risk of evolving resistance. The cowpea aphid (Aphis craccivora Koch) has evolved insecticide resistance to multiple insecticides outside Australia and was recently identified as a high-risk species in Australia. In this study, we generated toxicity data against four insecticides (representing four unique chemical Mode of Action groups) for populations of A. craccivora collected across Australia. Alpha-cypermethrin was the most toxic chemical to A. craccivora in leaf-dip laboratory bioassays with an average LC50 value across nine populations of 0.008 mg a.i./L, which was significantly lower than dimethoate (1.17 mg a.i./L) and pirimicarb (0.89 mg a.i./L). Small, but significant, differences in sensitivity were detected in some populations against pirimicarb and dimethoate, whereas responses to alpha-cypermethrin and imidacloprid were not significantly different across all aphid populations examined in this study. For all insecticides, the field rate controlled 100% of individuals tested. The data generated will be important for future monitoring of insecticide responses of A. craccivora. Proactive management, including increased reliance on non-chemical pest management approaches and routine insecticide baseline sensitivity studies, is recommended for A. craccivora.
Collapse
Affiliation(s)
- P A Umina
- Cesar Australia, Brunswick, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - J Reidy-Crofts
- CSIRO, Land and Water, Floreat, Western Australia, Australia
| | - O Edwards
- CSIRO, Land and Water, Floreat, Western Australia, Australia
| | - E Chirgwin
- Cesar Australia, Brunswick, Victoria, Australia
| | - S Ward
- Cesar Australia, Brunswick, Victoria, Australia
| | - J Maino
- Cesar Australia, Brunswick, Victoria, Australia
| | - M Babineau
- Cesar Australia, Brunswick, Victoria, Australia
| |
Collapse
|