1
|
Zhao D, Tang M, Hu P, Hu X, Chen W, Ma Z, Chen H, Liu H, Cao J, Zhou T. Antimicrobial peptide Hs02 with rapid bactericidal, anti-biofilm, and anti-inflammatory activity against carbapenem-resistant Klebsiella pneumoniae and Escherichia coli. Microbiol Spectr 2025; 13:e0105024. [PMID: 39625293 PMCID: PMC11705930 DOI: 10.1128/spectrum.01050-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) and Escherichia coli (CREC) are frequently detected in clinical settings, restricting the use of carbapenems. Therefore, there is an urgent need for new antimicrobial strategies to address infections caused by CRKP and CREC. This study investigated the antibacterial, anti-biofilm, and anti-inflammatory effects of the cationic antimicrobial peptide Hs02, along with its potential antimicrobial mechanisms against CRKP and CREC. The results revealed that Hs02 had a low minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against CRKP and CREC, effectively eliminating the bacteria within 30 min. Moreover, Hs02 significantly prevents biofilm formation and disrupts the established biofilms. Further mechanistic studies demonstrated that Hs02 specifically targeted and bound to bacterial outer membrane lipopolysaccharides (LPS), disrupted membrane permeability and integrity, which led to intracellular reactive oxygen species (ROS) accumulation. Furthermore, Hs02 neutralized LPS, thereby suppressing the production of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in murine macrophage RAW 264.7 cells. In vitro, hemolysis and cytotoxicity assays confirmed Hs02's safety at the tested concentrations and proved that Hs02 improved the survival rate of Galleria mellonella larvae. In conclusion, the findings suggest that Hs02's interaction with LPS and the resulting disruption of membrane integrity may be key factors driving its rapid bactericidal and anti-inflammatory effects. IMPORTANCE Eukaryotic antimicrobial peptides are typically amphipathic peptides consisting of approximately 50 amino acids. Many macromolecular proteins in our body contain polypeptide sequences that show characteristics similar to those of antimicrobial peptides. The present research highlights a gap in the current literature regarding the mechanisms by which the intragenic antimicrobial peptide Hs02, derived from human proteins, exerts its rapid bactericidal and anti-inflammatory effects. The findings demonstrate that lipopolysaccharide (LPS) is a key target of Hs02's antimicrobial activity and that its ability to neutralize LPS is crucial for its anti-inflammatory effects.
Collapse
Affiliation(s)
- Deyi Zhao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaowei Hu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijun Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haifeng Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Mota IDS, Cardoso M, Bueno J, da Silva IGM, Gonçalves J, Bao SN, Neto BAD, Brand G, Corrêa JR, Leite JRSA, Saldanha-Araujo F. Intragenic antimicrobial peptide Hs02 toxicity against leukemia cell lines is associated with increased expression of select pyroptotic components. Toxicol In Vitro 2024; 101:105945. [PMID: 39343072 DOI: 10.1016/j.tiv.2024.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The anticancer potential of some antimicrobial peptides has been reported. Hs02 is a recently characterized Intragenic Antimicrobial Peptide (IAP), which was able to exhibit potent antimicrobial and anti-inflammatory action. In this study, we evaluate for the first time the antineoplastic potential of the Hs02 IAP using cell lines representing the main types of leukemia as cancer models. Interestingly, this peptide decreased the viability of several leukemic cell lines, without compromising the viability of PBMCs in the same concentration. In the HL-60 line, treatment with Hs02 controlled cell division, leading to cell arrest in the G1 phase of the cell cycle. More importantly, HL-60 cells treated with Hs02 undergo cell death, with the formation of pores in the plasma membrane and the release of LDH. Accordingly, Hs02 treatment stimulated the expression of components involved in pyroptosis, such as NLRP1, CASP-1, GSDME, and IL-1β. Taken together, our data characterize the antineoplastic potential of Hs02 and open an opportunity for both evaluating the peptide's antineoplastic potential in other cancer models and using this molecule as a template for new peptides with therapeutic potential against cancer.
Collapse
Affiliation(s)
- Isabella de Souza Mota
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Miguel Cardoso
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília-DF, 70910-900, Brazil; iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon 1649-003, Portugal
| | - João Bueno
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ingrid Gracielle Martins da Silva
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - João Gonçalves
- iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon 1649-003, Portugal
| | - Sonia N Bao
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Brenno A D Neto
- Laboratório de Química Medicinal e Tecnológica, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Guilherme Brand
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - José Raimundo Corrêa
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília-DF, 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
3
|
Monsalve D, Mesa A, Mira LM, Mera C, Orduz S, Branch-Bedoya JW. Antimicrobial peptides designed by computational analysis of proteomes. Antonie Van Leeuwenhoek 2024; 117:55. [PMID: 38488950 DOI: 10.1007/s10482-024-01946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Antimicrobial peptides (AMPs) are promising cationic and amphipathic molecules to fight antibiotic resistance. To search for novel AMPs, we applied a computational strategy to identify peptide sequences within the organisms' proteome, including in-house developed software and artificial intelligence tools. After analyzing 150.450 proteins from eight proteomes of bacteria, plants, a protist, and a nematode, nine peptides were selected and modified to increase their antimicrobial potential. The 18 resulting peptides were validated by bioassays with four pathogenic bacterial species, one yeast species, and two cancer cell-lines. Fourteen of the 18 tested peptides were antimicrobial, with minimum inhibitory concentrations (MICs) values under 10 µM against at least three bacterial species; seven were active against Candida albicans with MICs values under 10 µM; six had a therapeutic index above 20; two peptides were active against A549 cells, and eight were active against MCF-7 cells under 30 µM. This study's most active antimicrobial peptides damage the bacterial cell membrane, including grooves, dents, membrane wrinkling, cell destruction, and leakage of cytoplasmic material. The results confirm that the proposed approach, which uses bioinformatic tools and rational modifications, is highly efficient and allows the discovery, with high accuracy, of potent AMPs encrypted in proteins.
Collapse
Affiliation(s)
- Dahiana Monsalve
- Escuela de Biociencias, Departamento de Ciencias, Universidad Nacional de Colombia, sede Medellín, Carrera 65 # 59A-110, 050034, Medellín, Antioquia, Colombia
| | - Andrea Mesa
- Escuela de Biociencias, Departamento de Ciencias, Universidad Nacional de Colombia, sede Medellín, Carrera 65 # 59A-110, 050034, Medellín, Antioquia, Colombia
| | - Laura M Mira
- Escuela de Biociencias, Departamento de Ciencias, Universidad Nacional de Colombia, sede Medellín, Carrera 65 # 59A-110, 050034, Medellín, Antioquia, Colombia
| | - Carlos Mera
- Departamento de Sistemas de Información, Instituto Tecnológico Metropolitano, Calle 54A # 30-01, 050013, Medellín, Antioquia, Colombia.
- Departamento de Ingeniería de Sistemas, Facultad de Ingenierías, Universidad de Antioquia, Calle 70 # 52-21, 050010, Medellín, Antioquia, Colombia.
| | - Sergio Orduz
- Escuela de Biociencias, Departamento de Ciencias, Universidad Nacional de Colombia, sede Medellín, Carrera 65 # 59A-110, 050034, Medellín, Antioquia, Colombia
| | - John W Branch-Bedoya
- Departamento de Ciencias de la Computación y de la Decisión, Facultad de Minas, Universidad Nacional de Colombia, sede Medellín, Av. 80 # 65-223, 050041, Medellín, Antioquia, Colombia
| |
Collapse
|
4
|
Costa ISD, Junot T, Silva FL, Felix W, Cardozo Fh JL, Pereira de Araujo AF, Pais do Amaral C, Gonçalves S, Santos NC, Leite JRSA, Bloch C, Brand GD. Occurrence and evolutionary conservation analysis of α-helical cationic amphiphilic segments in the human proteome. FEBS J 2024; 291:547-565. [PMID: 37945538 DOI: 10.1111/febs.16997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.
Collapse
Affiliation(s)
- Igor S D Costa
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Tiago Junot
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Fernanda L Silva
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Wanessa Felix
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada - NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - José L Cardozo Fh
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Antonio F Pereira de Araujo
- Laboratório de Biofísica Teórica e Computacional, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | | | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada - NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| |
Collapse
|
5
|
Aguilera-Puga MDC, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence. Methods Mol Biol 2024; 2714:329-352. [PMID: 37676607 DOI: 10.1007/978-1-0716-3441-7_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Peptides modulate many processes of human physiology targeting ion channels, protein receptors, or enzymes. They represent valuable starting points for the development of new biologics against communicable and non-communicable disorders. However, turning native peptide ligands into druggable materials requires high selectivity and efficacy, predictable metabolism, and good safety profiles. Machine learning models have gradually emerged as cost-effective and time-saving solutions to predict and generate new proteins with optimal properties. In this chapter, we will discuss the evolution and applications of predictive modeling and generative modeling to discover and design safe and effective antimicrobial peptides. We will also present their current limitations and suggest future research directions, applicable to peptide drug design campaigns.
Collapse
Affiliation(s)
- Mariana D C Aguilera-Puga
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico
| | - Natalia L Cancelarich
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Fabien Plisson
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico.
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
6
|
Viana de Freitas T, Karmakar U, Vasconcelos AG, Santos MA, Oliveira do Vale Lira B, Costa SR, Barbosa EA, Cardozo-Fh J, Correa R, Ribeiro DJS, Prates MV, Magalhães KG, Soller Ramada MH, Roberto de Souza Almeida Leite J, Bloch C, Lima de Oliveira A, Vendrell M, Brand GD. Release of immunomodulatory peptides at bacterial membrane interfaces as a novel strategy to fight microorganisms. J Biol Chem 2023; 299:103056. [PMID: 36822328 PMCID: PMC10074799 DOI: 10.1016/j.jbc.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Cationic and amphiphilic peptides can be used as homing devices to accumulate conjugated antibiotics to bacteria-enriched sites and promote efficient microbial killing. However, just as important as tackling bacterial infections, is the modulation of the immune response in this complex microenvironment. In the present report, we designed a peptide chimaera called Chim2, formed by a membrane-active module, an enzyme hydrolysis site and a formyl peptide receptor 2 (FPR2) agonist. This molecule was designed to adsorb onto bacterial membranes, promote their lysis, and upon hydrolysis by local enzymes, release the FPR2 agonist sequence for activation and recruitment of immune cells. We synthesized the isolated peptide modules of Chim2 and characterized their biological activities independently and as a single polypeptide chain. We conducted antimicrobial assays, along with other tests aiming at the analyses of the cellular and immunological responses. In addition, assays using vesicles as models of eukaryotic and prokaryotic membranes were conducted and solution structures of Chim2 were generated by 1H NMR. Chim2 is antimicrobial, adsorbs preferentially to negatively charged vesicles while adopting an α-helix structure and exposes its disorganized tail to the solvent, which facilitates hydrolysis by tryptase-like enzymes, allowing the release of the FPR2 agonist fragment. This fragment was shown to induce accumulation of the cellular activation marker, lipid bodies, in mouse macrophages and the release of immunomodulatory interleukins. In conclusion, these data demonstrate that peptides with antimicrobial and immunomodulatory activities can be considered for further development as drugs.
Collapse
Affiliation(s)
- Thiago Viana de Freitas
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - Utsa Karmakar
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Andreanne G Vasconcelos
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Brasília, Distrito Federal, Brasil
| | - Michele A Santos
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil; Universidade de Brasília, Instituto de Química, Laboratório de Ressonância Magnética Nuclear, LRMN, Brasília, Distrito Federal, Brasil
| | - Bianca Oliveira do Vale Lira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil
| | - Samuel Ribeiro Costa
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - Eder Alves Barbosa
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - José Cardozo-Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Rafael Correa
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Dalila J S Ribeiro
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Maura Vianna Prates
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Kelly G Magalhães
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Marcelo Henrique Soller Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil
| | - José Roberto de Souza Almeida Leite
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Brasília, Distrito Federal, Brasil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Aline Lima de Oliveira
- Universidade de Brasília, Instituto de Química, Laboratório de Ressonância Magnética Nuclear, LRMN, Brasília, Distrito Federal, Brasil
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Guilherme Dotto Brand
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil.
| |
Collapse
|
7
|
Santos MA, Silva FL, Lira BOV, Cardozo Fh JL, Vasconcelos AG, Araujo AR, Murad AM, Garay AV, Freitas SM, Leite JRSA, Bloch C, Ramada MHS, de Oliveira AL, Brand GD. Probing human proteins for short encrypted antimicrobial peptides reveals Hs10, a peptide with selective activity for gram-negative bacteria. Biochim Biophys Acta Gen Subj 2023; 1867:130265. [PMID: 36280021 DOI: 10.1016/j.bbagen.2022.130265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some β-sheets. METHODS The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of β-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a β-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.
Collapse
Affiliation(s)
- Michele A Santos
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Fernanda L Silva
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Bianca O V Lira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - José L Cardozo Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Alyne R Araujo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brazil
| | - André M Murad
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Aisel V Garay
- Laboratório de Biofísica Molecular, Instituto de Biologia, Universidade de Brasília (IB-CEL/UnB), Campus Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Sonia M Freitas
- Laboratório de Biofísica Molecular, Instituto de Biologia, Universidade de Brasília (IB-CEL/UnB), Campus Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Marcelo H S Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Aline Lima de Oliveira
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
8
|
In Silico and In Vitro Analyses Reveal Promising Antimicrobial Peptides from Myxobacteria. Probiotics Antimicrob Proteins 2023; 15:202-214. [PMID: 36586039 PMCID: PMC9839799 DOI: 10.1007/s12602-022-10036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance (AMR) is a global concern, and as soon as new antibiotics are introduced, resistance to those agents emerges. Therefore, there is an increased appetite for alternative antimicrobial agents to traditional antibiotics. Here, we used in silico methods to investigate potential antimicrobial peptides (AMPs) from predatory myxobacteria. Six hundred seventy-two potential AMP sequences were extracted from eight complete myxobacterial genomes. Most putative AMPs were predicted to be active against Klebsiella pneumoniae with least activity being predicted against Staphylococcus aureus. One hundred seventeen AMPs (defined here as 'potent putative AMPs') were predicted to have very good activity against more than two bacterial pathogens, and these were characterized further in silico. All potent putative AMPs were predicted to have anti-inflammatory and antifungal properties, but none was predicted to be active against viruses. Twenty six (22%) of them were predicted to be hemolytic to human erythrocytes, five were predicted to have anticancer properties, and 56 (47%) were predicted to be biofilm active. In vitro assays using four synthesized AMPs showed high MIC values (e.g. So_ce_56_913 250 µg/ml and Coral_AMP411 125 µg/ml against E. coli). However, antibiofilm assays showed a substantial reduction in numbers (e.g. Coral_AMP411 and Myxo_mac104 showed a 69% and 73% reduction, respectively, at the lowest concentration against E. coli) compared to traditional antibiotics. Fourteen putative AMPs had high sequence similarity to proteins which were functionally associated with proteins of known function. The myxobacterial genomes also possessed a variety of biosynthetic gene clusters (BGCs) that can encode antimicrobial secondary metabolites, but their numbers did not correlate with those of the AMPs. We suggest that AMPs from myxobacteria are a promising source of novel antimicrobial agents with a plethora of biological properties.
Collapse
|
9
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
10
|
Souza LAL, Dias LP, Araújo NMS, Carneiro RF, Nagano CS, Teixeira CS, Silva RGG, Oliveira JTA, Sousa DOB. JcTI-PepI, a synthetic peptide bioinspired in the trypsin inhibitor from Jatropha curcas, presents potent inhibitory activity against C. krusei, a neglected pathogen. Biochimie 2022; 200:107-118. [PMID: 35623496 DOI: 10.1016/j.biochi.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
Abstract
Antimicrobial resistance has been increasing globally, posing a global public health risk. It has prompted the scientific community to look for alternatives to traditional drugs. Antimicrobial Peptides (AMPs) have stood out in this context because they have the potential to control infectious diseases while causing no or little harm to mammalian cells. In the present study, three peptides, JcTI-PepI, JcTI-PepII, and JcTI-PepIII, were designed and tested for antimicrobial activity based on the primary sequence of JcTI-I, a 2S albumin with trypsin inhibitory activity from Jatropha curcas. JcTI-PepI strongly inhibited C. krusei growth, and it caused severe disruptions in cellular processes and cell morphology. C. krusei cells treated with JcTI-PepI showed indicative of membrane permeabilization and overproduction of Reactive Oxygen Species. Moreover, the yeast's ability to acidify the medium was severely compromised. JcTI-PepI was also effective against pre-formed biofilm and did not harm human erythrocytes and Vero cells. Overall, these characteristics indicate that JcTI-PepI is both safe and effective against C. krusei, an intrinsically resistant strain that causes serious health problems and is frequently overlooked. It implies that this peptide has a high potential for use as a new antimicrobial agent in the future.
Collapse
Affiliation(s)
- Larissa A L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Lucas P Dias
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nadine M S Araújo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Rômulo F Carneiro
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Celso S Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Claudener S Teixeira
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil
| | - Rafael G G Silva
- Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - José T A Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Daniele O B Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
11
|
Plácido A, do Pais do Amaral C, Teixeira C, Nogueira A, Brango-Vanegas J, Alves Barbosa E, C Moreira D, Silva-Carvalho AÉ, da Silva MDG, do Nascimento Dias J, Albuquerque P, Saldanha-Araújo F, C D A Lima F, Batagin-Neto A, Kuckelhaus S, Bessa LJ, Freitas J, Dotto Brand G, C Santos N, B Relvas J, Gomes P, S A Leite JR, Eaton P. Neuroprotective effects on microglia and insights into the structure-activity relationship of an antioxidant peptide isolated from Pelophylax perezi. J Cell Mol Med 2022; 26:2793-2807. [PMID: 35460166 PMCID: PMC9097852 DOI: 10.1111/jcmm.17292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian’s skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin‐like peptide, named PpT‐2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP‐HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT‐2 (FPWLLS‐NH2) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT‐2 shared physicochemical properties with other well‐known antioxidants. To test PpT‐2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical‐based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT‐2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT‐2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA‐stimulated BV‐2 microglia cells. We further explored possible bioactivities of PpT‐2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT‐2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT‐2. This novel peptide, PpT‐2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Alexandra Plácido
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Cátia Teixeira
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ariane Nogueira
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - José Brango-Vanegas
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Eder Alves Barbosa
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil.,Laboratory of Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry (IQ), University of Brasilia, Brasília, Brazil
| | - Daniel C Moreira
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Amandda É Silva-Carvalho
- Laboratory of Hematology and Stem Cells, Faculty of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Maria da Gloria da Silva
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Jhones do Nascimento Dias
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.,Biomedicine Course, Federal University of Delta do Parnaíba (UFDPar), Parnaíba, Brazil
| | - Patrícia Albuquerque
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.,Faculty of Ceilândia, University of Brasilia, Brasilia, Brazil
| | - Felipe Saldanha-Araújo
- Laboratory of Hematology and Stem Cells, Faculty of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Filipe C D A Lima
- Federal Institute of Education, Science and Technology of São Paulo, Matão, Brazil
| | | | - Selma Kuckelhaus
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Lucinda J Bessa
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.,Egas Moniz Interdisciplinary Research Center (CiiEM), Egas Moniz - Cooperative for Higher Education, CRL, Almada, Portugal
| | - Jaime Freitas
- Institute for Research and Innovation in Health (i3S), National Institute of Biomedical Engineering (INEB), University of Porto, Porto, Portugal
| | - Guilherme Dotto Brand
- Laboratory of Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry (IQ), University of Brasilia, Brasília, Brazil
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João B Relvas
- Institute for Research and Innovation in Health (i3S), Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Paula Gomes
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Roberto S A Leite
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.,Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Peter Eaton
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.,The Bridge, School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| |
Collapse
|
12
|
Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochim Biophys Acta Gen Subj 2021; 1865:129989. [PMID: 34389467 DOI: 10.1016/j.bbagen.2021.129989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Here we describe a new class of cryptides (peptides encrypted within a larger protein) with antimicrobial properties, named schistocins, derived from SmKI-1, a key protein in Shistosoma mansoni survival. This is a multi-functional protein with biotechnological potential usage as a therapeutic molecule in inflammatory diseases and to control schistosomiasis. METHODS We used our algorithm enCrypted, to perform an in silico proteolysis of SmKI-1 and a screening for potential antimicrobial activity. The selected peptides were chemically synthesized, tested in vitro and evaluated by both structural (CD, NMR) and biophysical (ITC) studies to access their structure-function relationship. RESULTS EnCrypted was capable of predicting AMPs in SmKI-1. Our biophysical analyses described a membrane-induced conformational change from random coil-to-α-helix and a peptide-membrane equilibrium for all schistocins. Our structural data allowed us to suggest a well-known mode of peptide-membrane interaction in which electrostatic attraction between the cationic peptides and anionic membranes results in the bilayer disordering. Moreover, the NMR exchange H/D data with the higher entropic contribution observed for the peptide-membrane interaction showed that shistocins have different orientations upon the membrane. CONCLUSIONS This work demonstrate the robustness for using the physicochemical features of predicted peptides in the identification of new bioactive cryptides besides the relevance of combining these analyses with biophysical methods to understand the peptide-membrane affinity and improve further algorithms. GENERAL SIGNIFICANCE Bioprospecting cryptides can be conducted through data mining of protein databases demonstrating the success of our strategy. The peptides-based agents derived from SmKI-1 might have high impact for system-biology and biotechnology.
Collapse
|
13
|
Vincenzi M, Mercurio FA, Leone M. NMR Spectroscopy in the Conformational Analysis of Peptides: An Overview. Curr Med Chem 2021; 28:2729-2782. [PMID: 32614739 DOI: 10.2174/0929867327666200702131032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems. OBJECTIVE This review provides a toolkit to investigate peptide conformational properties by NMR. METHODS Articles cited herein, related to NMR studies of peptides and proteins were mainly searched through PubMed and the web. More recent and old books on NMR spectroscopy written by eminent scientists in the field were consulted as well. RESULTS The review is mainly focused on NMR tools to gain the 3D structure of small unlabeled peptides. It is more application-oriented as it is beyond its goal to deliver a profound theoretical background. However, the basic principles of 2D homonuclear and heteronuclear experiments are briefly described. Protocols to obtain isotopically labeled peptides and principal triple resonance experiments needed to study them, are discussed as well. CONCLUSION NMR is a leading technique in the study of conformational preferences of small flexible peptides whose structure can be often only described by an ensemble of conformations. Although NMR studies of peptides can be easily and fast performed by canonical protocols established a few decades ago, more recently we have assisted to tremendous improvements of NMR spectroscopy to investigate instead large systems and overcome its molecular weight limit.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| |
Collapse
|
14
|
Mariano G, Gomes de Sá L, Carmo da Silva E, Santos M, Cardozo Fh J, Lira B, Barbosa E, Araujo A, Leite J, Ramada M, Bloch Jr. C, Oliveira A, Chaker J, Brand G. Characterization of novel human intragenic antimicrobial peptides, incorporation and release studies from ureasil-polyether hybrid matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111581. [DOI: 10.1016/j.msec.2020.111581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
|
15
|
Memariani H, Memariani M, Robati RM, Nasiri S, Abdollahimajd F, Baseri Z, Moravvej H. Anti-Staphylococcal and cytotoxic activities of the short anti-microbial peptide PVP. World J Microbiol Biotechnol 2020; 36:174. [PMID: 33083940 DOI: 10.1007/s11274-020-02948-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 01/25/2023]
Abstract
Over the past years, short anti-microbial peptides have drawn growing attention in the research and trade literature because they are usually capable of killing a broad spectrum of pathogens by employing unique mechanisms of action. This study aimed to evaluate the anti-bacterial effects of a previously designed peptide named PVP towards the clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Secondary structure, cytotoxicity, and membrane-permeabilizing effects of the peptide were also assessed. PVP had a tendency to adopt alpha-helical conformation based upon structural predictions and circular dichroism spectroscopy (in 50% trifluoroethanol). The peptide showed MIC values ranging from 1 to 16 µg/mL against 10 strains of MRSA. In contrast to ciprofloxacin and gentamicin, PVP at sub-lethal concentration (1 µg/mL) did not provoke the development of peptide resistance after 14 serial passages. Remarkably, 1 h of exposure to 4 × MBC of PVP (8 µg/mL) was sufficient for total bacterial clearance, whereas 4 × MBC of vancomycin (8 µg/mL) failed to totally eradicate bacterial cells, even after 8 h. PVP showed negligible cytotoxicity against human dermal fibroblasts at concentrations required to kill the MRSA strains. The results of flow cytometric analysis and fluorescence microscopy revealed that PVP caused bacterial membrane permeabilization, eventually culminating in cell death. Owing to the potent anti-bacterial activity, fast bactericidal kinetics, and negligible cytotoxicity, PVP has the potential to be used as a candidate antibiotic for the topical treatment of MRSA infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Mahmoud Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Nasiri
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zohre Baseri
- Department of Pathology and Laboratory Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Phylloseptin-1 is Leishmanicidal for Amastigotes of Leishmania amazonensis Inside Infected Macrophages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134856. [PMID: 32640562 PMCID: PMC7370015 DOI: 10.3390/ijerph17134856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Leishmania protozoans are the causal agents of neglected diseases that represent an important public health issue worldwide. The growing occurrence of drug-resistant strains of Leishmania and severe side effects of available treatments represent an important challenge for the leishmaniases treatment. We have previously reported the leishmanicidal activity of phylloseptin-1 (PSN-1), a peptide found in the skin secretion of Phyllomedusa azurea (=Pithecopus azureus), against Leishmania amazonensis promastigotes. However, its impact on the amastigote form of L. amazonensis and its impact on infected macrophages are unknown. In this work, we evaluated the effects of PSN-1 on amastigotes of L. amazonensis inside macrophages infected in vitro. We assessed the production of hydrogen peroxide and nitric oxide, as well as the levels of inflammatory and immunomodulatory markers (TGF-β, TNF-α and IL-12), in infected and non-infected macrophages treated with PSN-1. Treatment with PSN-1 decreased the number of infected cells and the number of ingested amastigotes per cell when compared with the untreated cells. At 32 µM (64 µg/mL), PSN-1 reduced hydrogen peroxide levels in both infected and uninfected macrophages, whereas it had little effect on NO production or TGF-β release. The effect of PSN-1 on IL-12 and TNF-α secretion depended on its concentration, but, in general, their levels tended to increase as PSN-1 concentration increased. Further in vitro and in vivo studies are needed to clarify the mechanisms of action of PSN-1 and its interaction with the immune system aiming to develop pharmacological applications.
Collapse
|