1
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
2
|
Liu C, Wang Z, Wang J, Liu C, Wang M, Ngo V, Wang W. Predicting regional somatic mutation rates using DNA motifs. PLoS Comput Biol 2023; 19:e1011536. [PMID: 37782656 PMCID: PMC10569533 DOI: 10.1371/journal.pcbi.1011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/12/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
How the locus-specificity of epigenetic modifications is regulated remains an unanswered question. A contributing mechanism is that epigenetic enzymes are recruited to specific loci by DNA binding factors recognizing particular sequence motifs (referred to as epi-motifs). Using these motifs to predict biological outputs depending on local epigenetic state such as somatic mutation rates would confirm their functionality. Here, we used DNA motifs including known TF motifs and epi-motifs as a surrogate of epigenetic signals to predict somatic mutation rates in 13 cancers at an average 23kbp resolution. We implemented an interpretable neural network model, called contextual regression, to successfully learn the universal relationship between mutations and DNA motifs, and uncovered motifs that are most impactful on the regional mutation rates such as TP53 and epi-motifs associated with H3K9me3. Furthermore, we identified genomic regions with significantly higher mutation rates than the expected values in each individual tumor and demonstrated that such cancer-related regions can accurately predict cancer types. Interestingly, we found that the same mutation signatures often have different contributions to cancer-related and cancer-independent regions, and we also identified the motifs with the most contribution to each mutation signature.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jun Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Chengyu Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Vu Ngo
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Ryczek N, Łyś A, Makałowska I. The Functional Meaning of 5'UTR in Protein-Coding Genes. Int J Mol Sci 2023; 24:2976. [PMID: 36769304 PMCID: PMC9917990 DOI: 10.3390/ijms24032976] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5' untranslated region (5'UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, and structural components involved in the regulation of mRNA stability, pre-mRNA splicing, and translation initiation. Activation of the alternative, more upstream transcription start site leads to an extension of 5'UTR. One of the consequences of 5'UTRs extension may be head-to-head gene overlap. This review describes elements in 5'UTR of protein-coding transcripts and the functional significance of protein-coding genes 5' overlap with implications for transcription, translation, and disease.
Collapse
Affiliation(s)
| | | | - Izabela Makałowska
- Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznań, Uniwersytetu Ponańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Zhu Y, Sun W, Jiang X, Bai R, Luo Y, Gao Y, Li S, Huang Z, Gong Y, Xie C. Differential effects of WRAP53 transcript variants on non-small cell lung cancer cell behaviors. PLoS One 2023; 18:e0281132. [PMID: 36706151 PMCID: PMC9882892 DOI: 10.1371/journal.pone.0281132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The WD40-encoding RNA antisense to p53 (WRAP53) is an antisense gene of TP53 with three transcriptional start sites producing three transcript variants involved in the progression of non-small cell lung cancer. However, the mechanism by which these different transcript variants regulate non-small cell lung cancer cell behaviors is to be elucidated. METHODS Two non-small cell lung cancer cell lines, A549 cells with wild-type p53 and H1975 with mutated p53, were transfected with WRAP53-1α and WRAP53-1β siRNA. The biological effects were assessed via colony formation, cell viability, apoptosis, cell cycle, wound healing and cell invasion assays, as well as immunoblotting. RESULTS Knockdown of WRAP53-1α increased the mRNA and protein levels of p53; suppressed colony formation and proliferation of A549 cells but promoted them in H1975 cells; increased the proportion of cells in the G0/G1 phase in A549 cells but decreased that in H1975 cells; and suppressed migration and invasion in A549 cells but not in H1975 cells. Conversely, knockdown of WRAP53-1β had no effect on p53 expression; promoted the growth of A549 cells but not of H1975 cells; decreased the proportion of cells in the G0/G1 phase in A549 cells but not in H1975 cells; and promoted migration and invasion in A549 cells but not in H1975 cells. Knockdown of both WRAP53-1α and WRAP53-1β promoted apoptosis in A549 cells but not in H1975 cells. CONCLUSIONS WRAP53 transcript variants exerted different functions in non-small cell lung cancer cells and regulated non-small cell lung cancer cell behaviors depending on the p53 expression.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (CX); (YG)
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (CX); (YG)
| |
Collapse
|
5
|
Gadelha RB, Machado CB, Pessoa FMCDP, Pantoja LDC, Barreto IV, Ribeiro RM, de Moraes Filho MO, de Moraes MEA, Khayat AS, Moreira-Nunes CA. The Role of WRAP53 in Cell Homeostasis and Carcinogenesis Onset. Curr Issues Mol Biol 2022; 44:5498-5515. [PMID: 36354684 PMCID: PMC9688736 DOI: 10.3390/cimb44110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The WD repeat containing antisense to TP53 (WRAP53) gene codifies an antisense transcript for tumor protein p53 (TP53), stabilization (WRAP53α), and a functional protein (WRAP53β, WDR79, or TCAB1). The WRAP53β protein functions as a scaffolding protein that is important for telomerase localization, telomere assembly, Cajal body integrity, and DNA double-strand break repair. WRAP53β is one of many proteins known for containing WD40 domains, which are responsible for mediating a variety of cell interactions. Currently, WRAP53 overexpression is considered a biomarker for a diverse subset of cancer types, and in this study, we describe what is known about WRAP53β's multiple interactions in cell protein trafficking, Cajal body formation, and DNA double-strand break repair and its current perspectives as a biomarker for cancer.
Collapse
Affiliation(s)
- Renan Brito Gadelha
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém 60430-275, PA, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Igor Valentim Barreto
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | | | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
| |
Collapse
|
6
|
Galisa SLG, Jacob PL, de Farias AA, Lemes RB, Alves LU, Nóbrega JCL, Zatz M, Santos S, Weller M. Haplotypes of single cancer driver genes and their local ancestry in a highly admixed long-lived population of Northeast Brazil. Genet Mol Biol 2022; 45:e20210172. [PMID: 35112701 PMCID: PMC8811751 DOI: 10.1590/1678-4685-gmb-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.
Collapse
Affiliation(s)
- Steffany Larissa Galdino Galisa
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Priscila Lima Jacob
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Allysson Allan de Farias
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Renan Barbosa Lemes
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Leandro Ucela Alves
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Júlia Cristina Leite Nóbrega
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Mayana Zatz
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Silvana Santos
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| | - Mathias Weller
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| |
Collapse
|
7
|
Maqsood Q, Sumrin A, Mahnoor M, Waseem M, Tabassum N, Bhattacharya R, Saraf D, Bose D. Tumor suppressor protein p53 and association of its gene TP53 with schizophrenia patients. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Li X, Li Z, Yang M, Luo Y, Hu L, Xiao Z, Huang A, Huang J. Two tSNPs in BRIP1 are associated with breast cancer during TDT analysis. Mol Genet Genomic Med 2021; 9:e1578. [PMID: 33403820 PMCID: PMC8077123 DOI: 10.1002/mgg3.1578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022] Open
Abstract
Objectives This study aimed to investigate and confirm the association between 15 single nucleotide polymorphisms of four susceptibility genes (NBS1, TP53, PTEN, and BRIP1) and the susceptibility of breast cancer. Methods The genome DNA was extracted from peripheral blood and tumor tissues from one hundred and seventeen core families. 15 SNPs were detected by PCR. The transmission disequilibrium test (TDT) and the Hardy–Weinberg equilibrium (HWE) are used to verify the association between these SNPs and breast cancer. Further correlation between SNPs and certain pathological features of the tumor, including tumor size, location of lymph nodes, pathologic classification, and the stage and subtype of breast cancer, are analyzed by the chi‐square test and logistic regression analysis. Results Based on TDTs, two SNPs of rs7220719 and rs11871753 in BRIP1 showed a significant association with breast cancer, while the other 13 selected SNPs did not. However, further statistical analysis demonstrated no obvious differentiation in the clinical characteristics of breast cancer between 37 patients with rs7220719 and 80 patients with wild types. Similar results were also found for rs11871753. Conclusions The data provided the evidence for the association between two SNPs of BRIP1 and breast cancer, but did not affect certain clinical phenotypes.
Collapse
Affiliation(s)
- Xuefei Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Miao Yang
- Xiangya Hospital, Central South University, Changsha, China
| | - Yan Luo
- Xiangya Hospital, Central South University, Changsha, China
| | - Li Hu
- Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Xiao
- Xiangya Hospital, Central South University, Changsha, China
| | - Aji Huang
- Xiangya Hospital, Central South University, Changsha, China
| | - Juan Huang
- Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Olkova MV, Petrushenko VS, Ponomarev GY. Analysis of 13 TP53 and WRAP53 polymorphism frequencies in russian populations. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last decade the search for and annotation of human genome polymorphisms associated with phenotype have become particularly important concerning the opportunity of their use in medical and population genetics, pharmacogenomics and evolutionary biology. The study was aimed to calculate the frequencies and analyze the prevalence of 13 germline polymorphisms of two genes, ТР53 encoding the genome-keeper p53 protein and WRAP53 involved in regulation of p53 production, in 28 Russian populations. We obtained data on 9 exonic ТР53 variants (rs587781663, rs17882252, rs150293825, rs112431538, rs149633775, rs144340710, rs1042522, rs1800371, rs201753350), one intronic polymorphism (rs17881850), and three variants of WRAP53 (rs17880282, rs2287499, rs34067256). In the majority of populations the sample size was over 50 people (except five populations with 30–49 surveyed people). The alternative alleles’ population frequencies for studies genetic variants in most Russian populations were close to appropriate allele frequencies in European and Asian populations of similar origin taken from global databases. The exceptions were six populations ("Central Caucasus", "Dagestan", "northern Russians", "southeastern Russians", "Tatars" and "Transcaucasia") with increased alternative alleles’ population frequencies. All listed populations except the population of “southeastern Russians” are characterized by polymorphisms with high allele frequencies not satisfying the Hardy–Weinberg principle.
Collapse
Affiliation(s)
- MV Olkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - VS Petrushenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - GYu Ponomarev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Sánchez-Morán I, Rodríguez C, Lapresa R, Agulla J, Sobrino T, Castillo J, Bolaños JP, Almeida A. Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. SCIENCE ADVANCES 2020; 6:6/41/eabc5702. [PMID: 33028529 PMCID: PMC7541066 DOI: 10.1126/sciadv.abc5702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/18/2020] [Indexed: 05/07/2023]
Abstract
Failure of neurons to efficiently repair DNA double-strand breaks (DSBs) contributes to cerebral damage after stroke. However, the molecular machinery that regulates DNA repair in this neurological disorder is unknown. Here, we found that DSBs in oxygen/glucose-deprived (OGD) neurons spatiotemporally correlated with the up-regulation of WRAP53 (WD40-encoding p53-antisense RNA), which translocated to the nucleus to activate the DSB repair response. Mechanistically, OGD triggered a burst in reactive oxygen species that induced both DSBs and translocation of WRAP53 to the nucleus to promote DNA repair, a pathway that was confirmed in an in vivo mouse model of stroke. Noticeably, nuclear translocation of WRAP53 occurred faster in OGD neurons expressing the Wrap53 human nonsynonymous single-nucleotide polymorphism (SNP) rs2287499 (c.202C>G). Patients carrying this SNP showed less infarct volume and better functional outcome after stroke. These results indicate that WRAP53 fosters DNA repair and neuronal survival to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Irene Sánchez-Morán
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Cristina Rodríguez
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Jesús Agulla
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
- CIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Shavali M, Pouladi N, Abdolahi S, Farajzadeh D, Moniri S. Investigating the association of rs920778T > C polymorphism in HOTAIR gene in breast cancer patients in the northwestern of Iran. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Diakite B, Kassogue Y, Dolo G, Kassogue O, Keita ML, Joyce B, Neuschler E, Wang J, Musa J, Traore CB, Kamate B, Dembele E, Nadifi S, Isichei M, Holl JL, Murphy R, Doumbia S, Hou L, Maiga M. Association of PIN3 16-bp duplication polymorphism of TP53 with breast cancer risk in Mali and a meta-analysis. BMC MEDICAL GENETICS 2020; 21:142. [PMID: 32620097 PMCID: PMC7333399 DOI: 10.1186/s12881-020-01072-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Background Breast cancer, the most common tumor in women in Mali and worldwide has been linked to several risk factors, including genetic factors, such as the PIN3 16-bp duplication polymorphism of TP53. The aim of our study was to evaluate the role of the PIN3 16-bp duplication polymorphism in the susceptibility to breast cancer in the Malian population and to perform a meta-analysis to better understand the correlation with data from other populations. Methods We analyzed the PIN3 16-bp duplication polymorphism in blood samples of 60 Malian women with breast cancer and 60 healthy Malian women using PCR. In addition, we performed a meta-analysis of case-control study data from international databases, including Pubmed, Harvard University Library, Genetics Medical Literature Database, Genesis Library and Web of Science. Overall, odds ratio (OR) with 95% CI from fixed and random effects models were determined. Inconsistency was used to assess heterogeneity between studies and publication bias was estimated using the funnel plot. Results In the studied Malian patients, a significant association of PIN3 16-bp duplication polymorphism with breast cancer risk was observed in dominant (A1A2 + A2A2 vs. A1A1: OR = 2.26, CI 95% = 1.08–4.73; P = 0.02) and additive (A2 vs. A1: OR = 1.87, CI 95% = 1.05–3.33; P = 0.03) models, but not in the recessive model (P = 0.38). In the meta-analysis, nineteen (19) articles were included with a total of 6018 disease cases and 4456 controls. Except for the dominant model (P = 0.15), an increased risk of breast cancer was detected with the recessive (OR = 1.46, 95% CI = 1.15–1.85; P = 0.002) and additive (OR = 1.11, 95% CI = 1.02–1.19; P = 0.01) models. Conclusion The case-control study showed that PIN3 16-bp duplication polymorphism of TP53 is a significant risk factor for breast cancer in Malian women. These findings are supported by data from the meta-analysis carried out on different ethnic groups around the world.
Collapse
Affiliation(s)
- Brehima Diakite
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali.
| | - Yaya Kassogue
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali
| | - Guimogo Dolo
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali
| | - Oumar Kassogue
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali
| | | | - Brian Joyce
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | - Erin Neuschler
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jun Wang
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | - Jonah Musa
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA.,Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Cheick Bougari Traore
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali.,University Teaching Hospital Point G, Bamako, Mali
| | - Bakarou Kamate
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali.,University Teaching Hospital Point G, Bamako, Mali
| | - Etienne Dembele
- Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | | | - Mercy Isichei
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Jane L Holl
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Robert Murphy
- Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | - Seydou Doumbia
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali
| | - Lifang Hou
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | - Mamoudou Maiga
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali.,Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|