1
|
Neumann J, Dietrich T, Azatsian K, Hofmann B, Gergs U. Cardiac effects of two hallucinogenic natural products, N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyl-tryptamine. Sci Rep 2025; 15:6715. [PMID: 40000760 PMCID: PMC11862204 DOI: 10.1038/s41598-025-91400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
It is unclear whether hallucinogenic tryptamine derivatives namely N,N-dimethyl-tryptamine (DMT) and 5-methoxy-N,N-dimethyl-tryptamine (5-MeO-DMT) exert positive inotropic effects in the human heart. Therefore, we measured the inotropic effects of these drugs in isolated left and right atrial preparations of mice that overexpress human 5-HT4 receptors (5-HT4-TG) and preparations from wild type mice (WT). Moreover, we measured force of contraction in isolated right atrial preparations from adult patients, obtained in the process of open heart surgery due to severe coronary heart disease. DMT and 5-MeO-DMT augmented the force of contraction in isolated paced (1 Hz) left atrial preparations from 5-HT4-TG and raised the spontaneous beating rate of right atrial preparations from 5-HT4-TG. The drugs elevated force of contraction in paced (1 Hz) human right atrial muscle preparations. The maximum inotropic effects of DMT and 5-MeO-DMT were smaller at 10 µM (about 65%) than that of 1 µM 5-HT on the left atria from 5-HT4-TG. The maximum increase in the beating rate due to DMT and 5-MeO-DMT amounted 40 ± 5% of the effect of 5-HT on right atrial preparations from 5-HT4-TG (n = 5-6). DMT and 5-MeO-DMT were inactive in WT. The potency of 5-MeO-DMT to increase force of contraction could be increased by pre-treatment of human atrial preparations by the phosphodiesterase inhibitor cilostamide (1 µM). 5-MeO-DMT increased the phosphorylation state of phospholamban at serine 16 in isolated left atrial muscle strips of 5-HT4-TG. In summary, DMT and 5-MeO-DMT acted as partial agonists on human 5-HT4 receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
| | - Tobias Dietrich
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
| | - Karyna Azatsian
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Gdansk, Poland
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, 06097, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany.
| |
Collapse
|
2
|
Neumann J, Dimov K, Azatsian K, Hofmann B, Gergs U. Effects of psilocin and psilocybin on human 5-HT 4 serotonin receptors in atrial preparations of transgenic mice and humans. Toxicol Lett 2024; 398:55-64. [PMID: 38876450 DOI: 10.1016/j.toxlet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Several fungi belonging to the genus Psilocybe, also called "magic mushrooms", contain the hallucinogenic drugs psilocybin and psilocin. They are chemically related to serotonin (5-HT). In addition to being abused as drugs, they are now also being discussed or used as a treatment option for depression. Here, we hypothesized that psilocybin and psilocin may act also on cardiac serotonin receptors and studied them in vitro in atrial preparations of our transgenic mouse model with cardiac myocytes-specific overexpression of the human 5-HT4 receptor (5-HT4-TG) as well as in human atrial preparations. Both psilocybin and psilocin enhanced the force of contraction in isolated left atrial preparations from 5-HT4-TG, increased the beating rate in isolated spontaneously beating right atrial preparations from 5-HT4-TG and augmented the force of contraction in the human atrial preparations. The inotropic and chronotropic effects of psilocybin and psilocin at 10 µM were smaller than that of 1 µM 5-HT on the left and right atria from 5-HT4-TG, respectively. Psilocybin and psilocin were inactive in WT. In the human atrial preparations, inhibition of the phosphodiesterase III by cilostamide was necessary to unmask the positive inotropic effects of psilocybin or psilocin. The effects of 10 µM psilocybin and psilocin were abrogated by 10 µM tropisetron or by 1 µM GR125487, a more selective 5-HT4 receptor antagonist. In summary, we demonstrated that psilocin and psilocybin act as agonists on cardiac 5-HT4 receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany
| | - Kiril Dimov
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany
| | - Karyna Azatsian
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Gdansk, Poland
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle D-06097, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany.
| |
Collapse
|
3
|
Manilall A, Mokotedi L, Gunter S, Le Roux R, Fourie S, Flanagan CA, Millen AME. Increased protein phosphatase 5 expression in inflammation-induced left ventricular dysfunction in rats. BMC Cardiovasc Disord 2022; 22:539. [PMID: 36494772 PMCID: PMC9732989 DOI: 10.1186/s12872-022-02977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Titin phosphorylation contributes to left ventricular (LV) diastolic dysfunction. The independent effects of inflammation on the molecular pathways that regulate titin phosphorylation are unclear. METHODS We investigated the effects of collagen-induced inflammation and subsequent tumor necrosis factor-α (TNF-α) inhibition on mRNA expression of genes involved in regulating titin phosphorylation in 70 Sprague-Dawley rats. LV diastolic function was assessed with echocardiography. Circulating inflammatory markers were quantified by enzyme-linked immunosorbent assay and relative LV gene expression was assessed by Taqman® polymerase chain reaction. Differences in normally distributed variables between the groups were determined by two-way analysis of variance (ANOVA), followed by Tukey post-hoc tests. For non-normally distributed variables, group differences were determined by Kruskal-Wallis tests. RESULTS Collagen inoculation increased LV relative mRNA expression of vascular cell adhesion molecule 1 (VCAM1), pentraxin 3 (PTX3), and inducible nitric oxide synthase (iNOS) compared to controls, indicating local microvascular inflammation. Collagen inoculation decreased soluble guanylate cyclase alpha-2 (sGCα2) and soluble guanylate cyclase beta-2 (sGCβ2) expression, suggesting downregulation of nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling. Inhibiting TNF-α prevented collagen-induced changes in VCAM1, iNOS, sGCα2 and sGCβ2 expression. Collagen inoculation increased protein phosphatase 5 (PP5) expression. Like LV diastolic dysfunction, increased PP5 expression was not prevented by TNF-α inhibition. CONCLUSION Inflammation-induced LV diastolic dysfunction may be mediated by a TNF-α-independent increase in PP5 expression and dephosphorylation of the N2-Bus stretch element of titin, rather than by TNF-α-induced downregulation of NO-sGC-cGMP pathway-dependent titin phosphorylation. The steady rise in number of patients with inflammation-induced diastolic dysfunction, coupled with low success rates of current therapies warrants a better understanding of the systemic signals and molecular pathways responsible for decreased titin phosphorylation in development of LV diastolic dysfunction. The therapeutic potential of inhibiting PP5 upregulation in LV diastolic dysfunction requires investigation.
Collapse
Affiliation(s)
- Ashmeetha Manilall
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Lebogang Mokotedi
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Sulè Gunter
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Regina Le Roux
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Serena Fourie
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Colleen A. Flanagan
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Aletta M. E. Millen
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| |
Collapse
|
4
|
Gergs U, Jahn T, Schulz N, Großmann C, Rueckschloss U, Demus U, Buchwalow IB, Neumann J. Protein Phosphatase 2A Improves Cardiac Functional Response to Ischemia and Sepsis. Int J Mol Sci 2022; 23:ijms23094688. [PMID: 35563079 PMCID: PMC9101092 DOI: 10.3390/ijms23094688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Reversible protein phosphorylation is a posttranslational modification of regulatory proteins involved in cardiac signaling pathways. Here, we focus on the role of protein phosphatase 2A (PP2A) for cardiac gene expression and stress response using a transgenic mouse model with cardiac myocyte-specific overexpression of the catalytic subunit of PP2A (PP2A-TG). Gene and protein expression were assessed under basal conditions by gene chip analysis and Western blotting. Some cardiac genes related to the cell metabolism and to protein phosphorylation such as kinases and phosphatases were altered in PP2A-TG compared to wild type mice (WT). As cardiac stressors, a lipopolysaccharide (LPS)-induced sepsis in vivo and a global cardiac ischemia in vitro (stop-flow isolated perfused heart model) were examined. Whereas the basal cardiac function was reduced in PP2A-TG as studied by echocardiography or as studied in the isolated work-performing heart, the acute LPS- or ischemia-induced cardiac dysfunction deteriorated less in PP2A-TG compared to WT. From the data, we conclude that increased PP2A activity may influence the acute stress tolerance of cardiac myocytes.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (T.J.); (N.S.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| | - Tina Jahn
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (T.J.); (N.S.); (J.N.)
| | - Nico Schulz
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (T.J.); (N.S.); (J.N.)
| | - Claudia Großmann
- Julius-Bernstein-Institut für Physiologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany;
| | - Uwe Rueckschloss
- Institut für Anatomie und Zellbiologie, Julius-Maximilians-Universität Würzburg, D-97070 Würzburg, Germany;
| | - Uta Demus
- Gesellschaft zur Förderung von Medizin-, Bio-und Umwelttechnologien e. V., D-06120 Halle, Germany;
| | - Igor B. Buchwalow
- Institut für Hämatopathologie, D-22547 Hamburg, Germany;
- Scientific and Educational Resource Center for Molecular Morphology, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (T.J.); (N.S.); (J.N.)
| |
Collapse
|
5
|
Neumann J, Bödicker K, Buchwalow IB, Schmidbaur C, Ramos G, Frantz S, Hofmann U, Gergs U. Effects of acute ischemia and hypoxia in young and adult calsequestrin (CSQ2) knock-out and wild-type mice. Mol Cell Biochem 2022; 477:1789-1801. [PMID: 35312907 PMCID: PMC9068673 DOI: 10.1007/s11010-022-04407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
Abstract
Calsequestrin (CSQ2) is the main Ca2+-binding protein in the sarcoplasmic reticulum of the mammalian heart. In order to understand the function of calsequestrin better, we compared two age groups (young: 4-5 months of age versus adult: 18 months of age) of CSQ2 knock-out mice (CSQ2(-/-)) and littermate wild-type mice (CSQ2(+/+)). Using echocardiography, in adult mice, the basal left ventricular ejection fraction and the spontaneous beating rate were lower in CSQ2(-/-) compared to CSQ2(+/+). The increase in ejection fraction by β-adrenergic stimulation (intraperitoneal injection of isoproterenol) was lower in adult CSQ2(-/-) versus adult CSQ2(+/+). After hypoxia in vitro (isolated atrial preparations) by gassing the organ bath buffer with 95% N2, force of contraction in electrically driven left atria increased to lower values in young CSQ2(-/-) than in young CSQ2(+/+). In addition, after global ischemia and reperfusion (buffer-perfused hearts according to Langendorff; 20-min ischemia and 15-min reperfusion), the rate of tension development was higher in young CSQ2(-/-) compared to young CSQ2(+/+). Finally, we evaluated signs of inflammation (immune cells, autoantibodies, and fibrosis). However, whereas no immunological alterations were found between all investigated groups, pronounced fibrosis was found in the ventricles of adult CSQ2(-/-) compared to all other groups. We suggest that in young mice, CSQ2 is important for cardiac performance especially in isolated cardiac preparations under conditions of impaired oxygen supply, but with differences between atrium and ventricle. Lack of CSQ2 leads age dependently to fibrosis and depressed cardiac performance in echocardiographic studies.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
- Institut für Pharmakologie und Toxikologie, Martin-Luther-Universität Halle-Wittenberg, Medizinische Fakultät, Magdeburger Str. 4, 06112 Halle, Germany
| | - Konrad Bödicker
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | | | - Constanze Schmidbaur
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Gustavo Ramos
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
6
|
Functional interaction of H 2-receptors and 5HT 4-receptors in atrial tissues isolated from double transgenic mice and from human patients. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2401-2418. [PMID: 34562141 PMCID: PMC8592968 DOI: 10.1007/s00210-021-02145-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 01/08/2023]
Abstract
In the past, we generated transgenic mice that overexpress the human histamine 2 (H2)-receptor (H2-TG) or that overexpress the human serotonin 4 (5-HT4)-receptor (5-HT4-TG) in the heart. Here, we crossbred these lines of mice to generate double transgenic mice that overexpress both receptors (DT). This was done to study a conceivable interaction between these receptors in the mouse heart as a model for the human heart. When in left atria, initially, force of contraction was elevated maximally with 1 µM serotonin, and subsequently, histamine was cumulatively applied; a biphasic effect of histamine was noted: the force of contraction initially decreased, maximally at 10 nM histamine, and thereafter, the force of contraction increased again at 1 µM histamine. Notably, functional interaction between 5-HT and histamine was also identified in isolated electrically stimulated trabeculae carneae from human right atrium (obtained during cardiac surgery). These functional and biochemical data together are consistent with a joint overexpression of inotropically active H2-receptors and 5-HT4-receptors in the same mouse heart. We also describe an antagonistic interaction on the force of contraction of both receptors in the mouse atrium (DT) and in the human atrial muscle strips. We speculate that via this interaction, histamine might act as a "brake" on the cardiac actions of 5-HT via inhibitory GTP-binding proteins acting on the activity of adenylyl cyclase.
Collapse
|
7
|
Dörner MF, Boknik P, Köpp F, Buchwalow IB, Neumann J, Gergs U. Mechanisms of Systolic Cardiac Dysfunction in PP2A, PP5 and PP2AxPP5 Double Transgenic Mice. Int J Mol Sci 2021; 22:ijms22179448. [PMID: 34502355 PMCID: PMC8431312 DOI: 10.3390/ijms22179448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after β-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.
Collapse
Affiliation(s)
- Mara-Francine Dörner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Mibe GmbH Arzneimittel, D-06796 Brehna, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, D-48149 Münster, Germany;
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Igor B. Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, D-22547 Hamburg, Germany;
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| |
Collapse
|
8
|
Gergs U, Gerigk T, Wittschier J, Schmidbaur CT, Röttger C, Mahnkopf M, Edler H, Wache H, Neumann J. Influence of Serotonin 5-HT 4 Receptors on Responses to Cardiac Stressors in Transgenic Mouse Models. Biomedicines 2021; 9:569. [PMID: 34070090 PMCID: PMC8158346 DOI: 10.3390/biomedicines9050569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The current study aimed to deepen our knowledge on the role of cardiac 5-HT4 receptors under pathophysiological conditions. To this end, we used transgenic (TG) mice that overexpressed human 5-HT4a receptors solely in cardiac myocytes (5-HT4-TG mice) and their wild-type (WT) littermates that do not have functional cardiac 5-HT4 receptors as controls. We found that an inflammation induced by lipopolysaccharide (LPS) was detrimental to cardiac function in both 5-HT4-TG and WT mice. In a hypoxia model, isolated left atrial preparations from the 5-HT4-TG mice went into contracture faster during hypoxia and recovered slower following hypoxia than the WT mice. Similarly, using isolated perfused hearts, 5-HT4-TG mice hearts were more susceptible to ischemia compared to WT hearts. To study the influence of 5-HT4 receptors on cardiac hypertrophy, 5-HT4-TG mice were crossbred with TG mice overexpressing the catalytic subunit of PP2A in cardiac myocytes (PP2A-TG mice, a model for genetically induced hypertrophy). The cardiac contractility, determined by echocardiography, of the resulting double transgenic mice was attenuated like in the mono-transgenic PP2A-TG and, therefore, largely determined by the overexpression of PP2A. In summary, depending on the kind of stress put upon the animal or isolated tissue, 5-HT4 receptor overexpression could be either neutral (genetically induced hypertrophy, sepsis) or possibly detrimental (hypoxia, ischemia) for mechanical function. We suggest that depending on the underlying pathology, the activation or blockade of 5-HT4 receptors might offer novel drug therapy options in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany; (U.G.); (T.G.); (J.W.); (C.T.S.); (C.R.); (M.M.); (H.E.); (H.W.)
| |
Collapse
|
9
|
Neumann J, Grobe JM, Weisgut J, Schwelberger HG, Fogel WA, Marušáková M, Wache H, Bähre H, Buchwalow IB, Dhein S, Hofmann B, Kirchhefer U, Gergs U. Histamine can be Formed and Degraded in the Human and Mouse Heart. Front Pharmacol 2021; 12:582916. [PMID: 34045955 PMCID: PMC8144513 DOI: 10.3389/fphar.2021.582916] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Histamine is metabolized by several enzymes in vitro and in vivo. The relevance of this metabolism in the mammalian heart in vivo is unclear. However, histamine can exert positive inotropic effects (PIE) and positive chronotropic effects (PCE) in humans via H2-histamine receptors. In transgenic mice (H2-TG) that overexpress the human H2 receptor in cardiomyocytes but not in wild-type littermate mice (WT), histamine induced PIE and PCE in isolated left or right atrial preparations. These H2-TG were used to investigate the putative relevance of histamine degrading enzymes in the mammalian heart. Histidine, the precursor of histamine, increased force of contraction (FOC) in human atrial preparations. Moreover, histamine increased the phosphorylation state of phospholamban in human atrium. Here, we could detect histidine decarboxylase (HDC) and histamine itself in cardiomyocytes of mouse hearts. Moreover, our data indicate that histamine is subject to degradation in the mammalian heart. Inhibition of the histamine metabolizing enzymes diamine oxidase (DAO) and monoamine oxidase (MAO) shifted the concentration response curves for the PIE in H2-TG atria to the left. Moreover, activity of histamine metabolizing enzymes was present in mouse cardiac samples as well as in human atrial samples. Thus, drugs used for other indication (e.g. antidepressants) can alter histamine levels in the heart. Our results deepen our understanding of the physiological role of histamine in the mouse and human heart. Our findings might be clinically relevant because we show enzyme targets for drugs to modify the beating rate and force of the human heart.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Juliane M Grobe
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jacqueline Weisgut
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hubert G Schwelberger
- Department of Visceral, Transplant and Thoracic Surgery, Molecular Biology Laboratory, Medical University Innsbruck, Innsbruck, Austria
| | | | - Margaréta Marušáková
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hartmut Wache
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - Stefan Dhein
- Klinik für Herzchirurgie, Herzzentrum der Universität Leipzig, Leipzig, Germany
| | - Britt Hofmann
- Department of Cardiothoracic Surgery, Heart Centre of the University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
10
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
11
|
Neumann J, Seidler T, Fehse C, Marušáková M, Hofmann B, Gergs U. Cardiovascular effects of metoclopramide and domperidone on human 5-HT 4-serotonin-receptors in transgenic mice and in human atrial preparations. Eur J Pharmacol 2021; 901:174074. [PMID: 33811834 DOI: 10.1016/j.ejphar.2021.174074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
It is unclear whether metoclopramide and domperidone act on human cardiac serotonin 5-HT4-receptors. Therefore, we studied transgenic mice that only express the human 5-HT4 receptor in cardiomyocytes in the atrium and in the ventricle (5-HT4-TG), their wild type-littermates (WT) and isolated human atrial preparations. We found that only metoclopramide but not domperidone enhanced the force of contraction in left atrial preparations (pEC50 = 6.0 ± 0.1; n = 7) from 5-HT4-TG, isolated spontaneously beating right atrial preparations (pEC50 = 6.1 ± 0.1; n = 7) from 5-HT4-TG, Langendorff perfused hearts from 5-HT4-TG, living 5-HT4-TG and human right atrial muscle preparations obtained during bypass surgery of patients suffering from coronary heart disease. The maximum inotropic effect of metoclopramide was smaller (81 ± 2%) than that of 5-HT on the left atria from 5-HT4-TG. The maximum increase in the beating rate due to metoclopramide was 93 ± 2% of effect of 5-HT on right atrial preparations from 5-HT4-TG. Metoclopramide and domperidone were inactive in WT. We found that metoclopramide but not domperidone increased the phosphorylation state of phospholamban in the isolated perfused hearts or muscle strips of 5-HT4-TG, but not in WT. Metoclopramide, but not domperidone, shifted the positive inotropic or chronotropic effects of 5-HT in isolated left atrial and right atrial preparations from 5-HT4-TG dextrally, resp., to higher concentrations: the pEC50 of 5-HT for increase in force was in the absence of metoclopramide 8.6 ± 0.1 (n = 5) versus 8.0 ± 0.3 in the presence of 1 μM metoclopramide (n = 5; P < 0.05); and the beating rate was 7.8 ± 0.2 (n = 7) in the absence of metoclopramide versus 7.2 ± 0.1 in the presence of 1 μM metoclopramide (n = 6; P < 0.05). These results suggested that metoclopramide had an antagonistic effect on human cardiac 5-HT4 receptors. In summary, we showed that metoclopramide, but not domperidone, was a partial agonist at human cardiac 5-HT4-receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Tom Seidler
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Charlotte Fehse
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Margaréta Marušáková
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| |
Collapse
|
12
|
Akimov MG, Fomina-Ageeva EV, Dudina PV, Andreeva LA, Myasoyedov NF, Bezuglov VV. ACTH(6-9)PGP Peptide Protects SH-SY5Y Cells from H 2O 2, tert-Butyl Hydroperoxide, and Cyanide Cytotoxicity via Stimulation of Proliferation and Induction of Prosurvival-Related Genes. Molecules 2021; 26:1878. [PMID: 33810344 PMCID: PMC8036943 DOI: 10.3390/molecules26071878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Stabilized melanocortin analog peptide ACTH(6-9)PGP (HFRWPGP) possesses a wide range of neuroprotective activities. However, its mechanism of action remains poorly understood. In this paper, we present a study of the proproliferative and cytoprotective activity of the adrenocorticotropic hormone fragment 6-9 (HFRW) linked with the peptide prolyine-glycyl-proline on the SH-SY5Y cells in the model of oxidative stress-related toxicity. The peptide dose-dependently protected cells from H2O2, tert-butyl hydroperoxide, and KCN and demonstrated proproliferative activity. The mechanism of its action was the modulation of proliferation-related NF-κB genes and stimulation of prosurvival NRF2-gene-related pathway, as well as a decrease in apoptosis.
Collapse
Affiliation(s)
- Mikhail G. Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Elena V. Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Polina V. Dudina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Ludmila A. Andreeva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, Ploshchad’ Akademika Kurchatova 2, 123182 Moscow, Russia; (L.A.A.); (N.F.M.)
| | - Nikolay F. Myasoyedov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, Ploshchad’ Akademika Kurchatova 2, 123182 Moscow, Russia; (L.A.A.); (N.F.M.)
| | - Vladimir V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| |
Collapse
|
13
|
Bollmann P, Werner F, Jaron M, Bruns TA, Wache H, Runte J, Boknik P, Kirchhefer U, Müller FU, Buchwalow IB, Rothemund S, Neumann J, Gergs U. Initial Characterization of Stressed Transgenic Mice With Cardiomyocyte-Specific Overexpression of Protein Phosphatase 2C. Front Pharmacol 2021; 11:591773. [PMID: 33597873 PMCID: PMC7883593 DOI: 10.3389/fphar.2020.591773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated mice with cardiac-specific overexpression of PP2Cβ (PP2C-TG) and compared them with littermate wild type mice (WT) serving as a control. Cardiac fibrosis was noted histologically in PP2C-TG. Collagen 1a, interleukin-6 and the natriuretic peptides ANP and BNP were augmented in PP2C-TG vs. WT (p < 0.05). Left atrial preparations from PP2C-TG were less resistant to hypoxia than atria from WT. PP2C-TG maintained cardiac function after the injection of lipopolysaccharide (LPS, a model of sepsis) and chronic isoproterenol treatment (a model of heart failure) better than WT. Crossbreeding of PP2C-TG mice with PP2A-TG mice (a genetic model of heart failure) resulted in double transgenic (DT) mice that exhibited a pronounced increase of heart weight in contrast to the mild hypertrophy noted in the mono-transgenic mice. The ejection fraction was reduced in PP2C-TG and in PP2A-TG mice compared with WT, but the reduction was the highest in DT compared with WT. PP2A enzyme activity was enhanced in PP2A-TG and DT mice compared with WT and PP2C-TG mice. In summary, cardiac overexpression of PP2Cβ and co-overexpression of both the catalytic subunit of PP2A and PP2Cβ were detrimental to cardiac function. PP2Cβ overexpression made cardiac preparations less resistant to hypoxia than WT, leading to fibrosis, but PP2Cβ overexpression led to better adaptation to some stressors, such as LPS or chronic β-adrenergic stimulation. Hence, the effect of PP2Cβ is context sensitive.
Collapse
Affiliation(s)
- Paula Bollmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Marko Jaron
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Tom A Bruns
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hartmut Wache
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jochen Runte
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
14
|
Sager RA, Dushukyan N, Woodford M, Mollapour M. Structure and function of the co-chaperone protein phosphatase 5 in cancer. Cell Stress Chaperones 2020; 25:383-394. [PMID: 32239474 PMCID: PMC7193036 DOI: 10.1007/s12192-020-01091-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 5 (PP5) is a serine/threonine protein phosphatase that regulates many cellular functions including steroid hormone signaling, stress response, proliferation, apoptosis, and DNA repair. PP5 is also a co-chaperone of the heat shock protein 90 molecular chaperone machinery that assists in regulation of cellular signaling pathways essential for cell survival and growth. PP5 plays a significant role in survival and propagation of multiple cancers, which makes it a promising target for cancer therapy. Though there are several naturally occurring PP5 inhibitors, none is specific for PP5. Here, we review the roles of PP5 in cancer progression and survival and discuss the unique features of the PP5 structure that differentiate it from other phosphoprotein phosphatase (PPP) family members and make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|