1
|
Jiang W, Duan S, Li W, Yan H, Si C, Xu N, Li Y, Zhang W, Gu S. PDGF-BB overexpressing dental pulp stem cells improve angiogenesis in dental pulp regeneration. Front Bioeng Biotechnol 2025; 13:1578410. [PMID: 40343206 PMCID: PMC12058851 DOI: 10.3389/fbioe.2025.1578410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Angiogenesis represents a critical challenge in dental pulp regeneration due to the tissue's restricted nutrient supply through a 0.5-mm apical foramen. While dental pulp stem cells (DPSCs) hold regenerative potential, their limited vascularization capacity impedes clinical applications. Through Single-cell RNA sequencing (scRNA-seq) analysis of human dental pulp, we discovered a PDGF (+) mesenchymal subset exhibiting enhanced angiogenic signatures, suggesting targeted cell selection could overcome this bottleneck. Methods ScRNA-seq identified PDGF (+) subpopulation in human pulp samples, validated through multiplex immunohistochemical of the localization of PDGF/CD73/CD31. PDGF-BB-overexpressing DPSCs were engineered via lentiviral vectors. Functional assessments included: 1) CCK-8/Edu/cell cycle/transwell assays for proliferation and migration ability 2) HUVECs co-culture models analyzing chemotaxis and tube formation 3) Vascularized tissue formation in rat kidney capsule transplants. Results and Discussion The CD73 (+) PDGF (+) subpopulation demonstrated spatial correlation with CD31 (+) vasculature. PDGF-BB overexpression enhanced DPSCs' proliferative capacity and migration capacity. Co-cultured HUVECs exhibited increased tube formation with PDGF-BB group. In vivo transplants generated more vascular structures containing CD31 (+) endothelia. These findings establish PDGF-BB engineering as an effective strategy to amplify DPSCs' angiogenic potential, while emphasizing the therapeutic value of functionally-defined stem cell subpopulations in pulp regeneration.
Collapse
Affiliation(s)
- Wentao Jiang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuhan Duan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Li
- The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Huijiao Yan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenli Si
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningwei Xu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yishuai Li
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Marzookian K, Aliakbari F, Hourfar H, Sabouni F, Otzen DE, Morshedi D. The neuroprotective effect of human umbilical cord MSCs-derived secretome against α-synuclein aggregates on the blood-brain barrier. Int J Biol Macromol 2025; 304:140387. [PMID: 39880228 DOI: 10.1016/j.ijbiomac.2025.140387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
The blood-brain barrier (BBB) is a specialized network that maintains central nervous system homeostasis. Disruption of the BBB can lead to neuronal damage and contribute to neurodegenerative diseases like Parkinson's disease (PD), characterized by alpha-synuclein (αSN) aggregation, which forms intracellular inclusions. Mesenchymal stem cells (MSCs) have shown promise in alleviating the severity of neurological diseases through their paracrine secretions. However, the impact of MSCs secretome on the BBB remains largely unclear. In this study, we investigated the effect of human umbilical cord-derived MSCs (hUC-MSCs) secretome on the BBB in the presence of toxic αSN-aggregates (αSN-AGs). Using in vitro BBB models established through mono- and co-culture systems of hCMEC/D3 cells, we assessed the influence of the secretome on the cytotoxicity and inflammatory responses induced by αSN-AGs. Our results demonstrate that the hUC-MSCs secretome exerts protective effects by mitigating the toxic effects of αSN-AGs on the BBB. Specifically, this study shows a notable reduction in cytotoxicity and inflammation. Our findings highlight the potential of hUC-MSCs secretome as a promising candidate for innovative, cell-free therapies in PD treatment. Furthermore, we propose an optimized method for isolating MSCs from umbilical cord tissue, aimed at facilitating future research on the therapeutic applications of these cells.
Collapse
Affiliation(s)
- Kimia Marzookian
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farhang Aliakbari
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hamdam Hourfar
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzaneh Sabouni
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark
| | - Dina Morshedi
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
3
|
Khastar S, Sattari M. Examining the level of inflammatory cytokines TNF-α and IL-8 produced by osteoblasts differentiated from dental pulp stem cells. AMERICAN JOURNAL OF STEM CELLS 2024; 13:225-232. [PMID: 39308765 PMCID: PMC11411251 DOI: 10.62347/cbmw4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND The use of dental pulp stem cells (DPSCs) in clinical applications instead of bone marrow stem cells is a very promising method capable of significantly changing the future of medical treatment. If further studies prove that DPSCs and the cells differentiated from them do not stimulate the immune system, these cells can be used more reliably in treatment of autoimmune diseases. METHODS In this research, we examined the isolated DPSCs and differentiated osteoblasts from them in medium without inflammatory stimulants in terms of TLR3 and TLR4 gene expression and inflammatory cytokines, including TNF-α and IL-8 using qRT-PCR, and measured the concentration of inflammatory cytokines IL-8 and TNF-α produced by these two types of cells through ELISA. RESULTS The obtained results showed that the expression level of inflammatory cytokines IL-8 and TNF-α in differentiated osteoblasts is significantly different as compared with DPSCs. However, no significant difference was observed in TLR-4 expression between two groups. An increase in TNF-α expression level was found to directly correlate with an increase in the expression of IL-8. The concentration of cytokine TNF-α in osteoblasts was significantly higher than that of IL-8 in DPSCs. CONCLUSION In comparison to DPSCs, osteoblast cells first lead to inflammatory responses. These responses reduce overtime. However, DPSCs retain their immunomodulatory properties and do not show inflammatory responses.
Collapse
Affiliation(s)
- Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Mandana Sattari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| |
Collapse
|
4
|
Shekatkar M, Kheur S, Deshpande S, Sanap A, Kharat A, Navalakha S, Gupta A, Kheur M, Bhonde R, Merchant YP. Angiogenic Potential of Various Oral Cavity-Derived Mesenchymal Stem Cells and Cell-Derived Secretome: A Systematic Review and Meta-Analysis. Eur J Dent 2024; 18:712-742. [PMID: 37995732 PMCID: PMC11290931 DOI: 10.1055/s-0043-1776315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Recent evidence suggests the immense potential of human mesenchymal stem cell (hMSC) secretome conditioned medium-mediated augmentation of angiogenesis. However, angiogenesis potential varies from source and origin. The hMSCs derived from the oral cavity share an exceptional quality due to their origin from a hypoxic environment. Our systematic review aimed to compare the mesenchymal stem cells (MSCs) derived from various oral cavity sources and cell-derived secretomes, and evaluate their angiogenic potential. A literature search was conducted using PubMed and Scopus from January 2000 to September 2020. Source-wise outcomes were systematically analyzed using in vitro, in vivo, and in ovo studies, emphasizing endothelial cell migration, tube formation, and blood vessel formation. Ninety-four studies were included in the systematic review, out of which 4 studies were subsequently included in the meta-analysis. Prominent growth factors and other bioactive components implicated in improving angiogenesis were included in the respective studies. The findings suggest that oral tissues are a rich source of hMSCs. The meta-analysis revealed a positive correlation between dental pulp-derived MSCs (DPMSCs) and stem cells derived from apical papilla (SCAP) compared to human umbilical cord-derived endothelial cell lines as a control. It shows a statistically significant positive correlation between the co-culture of human umbilical vein endothelial cells (HUVECs) and DPMSCs with tubule length formation and total branching points. Our meta-analysis revealed that oral-derived MSCs (dental pulp stem cells and SCAP) carry a better angiogenic potential in vitro than endothelial cell lines alone. The reviewed literature illustrates that oral cavity-derived MSCs (OC-MSCs) increased angiogenesis. The present literature reveals a dearth of investigations involving sources other than dental pulp. Even though OC-MSCs have revealed more significant potential than other MSCs, more comprehensive, target-oriented interinstitutional prospective studies are warranted to determine whether oral cavity-derived stem cells are the most excellent sources of significant angiogenic potential.
Collapse
Affiliation(s)
- Madhura Shekatkar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Shantanu Deshpande
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be) University Dental College and Hospital, Navi Mumbai, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Shivani Navalakha
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Archana Gupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, India
| | | | - Yash P. Merchant
- Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Dental College, and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
5
|
Santilli F, Fabrizi J, Santacroce C, Caissutti D, Spinello Z, Candelise N, Lancia L, Pulcini F, Delle Monache S, Mattei V. Analogies and Differences Between Dental Stem Cells: Focus on Secretome in Combination with Scaffolds in Neurological Disorders. Stem Cell Rev Rep 2024; 20:159-174. [PMID: 37962698 PMCID: PMC10799818 DOI: 10.1007/s12015-023-10652-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are well known for their beneficial effects, differentiation capacity and regenerative potential. Dental-derived MSCs (DSCs) are more easily accessible and have a non-invasive isolation method rather than MSCs isolated from other sources (umbilical cord, bone marrow, and adipose tissue). In addition, DSCs appear to have a relevant neuro-regenerative potential due to their neural crest origin. However, it is now known that the beneficial effects of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules (neurotrophic factors) released in the conditioned medium (CM) or in the extracellular vesicles (EVs) in particular exosomes (Exos). In this review, we described the similarities and differences between various DSCs. Our focus was on the secretome of DSCs and their applications in cell therapy for neurological disorders. For neuro-regenerative purposes, the secretome of different DSCs has been tested. Among these, the secretome of dental pulp stem cells and stem cells from human exfoliated deciduous teeth have been the most widely studied. Both CM and Exos obtained from DSCs have been shown to promote neurite outgrowth and neuroprotective effects as well as their combination with scaffold materials (to improve their functional integration in the tissue). For these reasons, the secretome obtained from DSCs in combination with scaffold materials may represent a promising tissue engineering approach for neuroprotective and neuro-regenerative treatments.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Via A.M. Ricci 35/A, 02100, Rieti, Italy
| | - Jessica Fabrizi
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Via A.M. Ricci 35/A, 02100, Rieti, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Niccolò Candelise
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 29900161, Rome, Italy
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| |
Collapse
|
6
|
Xing WB, Wu ST, Wang XX, Li FY, Wang RX, He JH, Fu J, He Y. Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications. World J Stem Cells 2023; 15:960-978. [PMID: 37970238 PMCID: PMC10631371 DOI: 10.4252/wjsc.v15.i10.960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
Collapse
Affiliation(s)
- Wen-Bo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Shu-Ting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xin-Xin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Fen-Yao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ruo-Xuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ji-Hui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
7
|
Hani R, Khayat L, Rahman AA, Alaaeddine N. Effect of stem cell secretome in skin rejuvenation: a narrative review. Mol Biol Rep 2023; 50:7745-7758. [PMID: 37452901 DOI: 10.1007/s11033-023-08622-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Cutaneous aging is an inevitable biological process that develops over time due to cumulative cellular and molecular changes caused by exposure to intrinsic (chronological aging) and extrinsic (photo-aging) factors on the skin. Skin aging is characterized by a decline in the body's capability to sustain senescence, dermal cell apoptosis, and homeostasis. Stem cell secretions (secretome) are defined as the total set of dynamically overlapping paracrine soluble growth factors, cytokines, chemokines, angiogenic factors, extracellular matrix proteins, and antimicrobial peptides known to be responsible for tissue rejuvenation, regeneration, homeostasis, and immunomodulation. METHODS In this review, we summarized the molecular and regulatory mechanism of the secretome in preventing the skin aging process, as well as its capacity in inducing skin rejuvenation. Furthermore, we illustrated secretome efficiency as an anti-aging therapeutic strategy based on in vitro and in vivo published studies. RESULTS In all reviewed publications, the secretome has been proven to be the most effective treatment for aged skin, capable of reversing the aging process through the action of cytokines, growth factors, and collagen, which are its primary components. The reported mechanism of action involves modulating the signaling pathways of aging and replenishing the skin with collagen, fibronectin, and elastin, ultimately resulting in skin renewal and rejuvenation. CONCLUSION In conclusion, compared to available treatments, the secretome shows great promise as an anti-aging therapy.
Collapse
Affiliation(s)
- Rita Hani
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | | | | | | |
Collapse
|
8
|
Mesenchyme Stem Cell-Derived Conditioned Medium as a Potential Therapeutic Tool in Idiopathic Pulmonary Fibrosis. Biomedicines 2022; 10:biomedicines10092298. [PMID: 36140399 PMCID: PMC9496127 DOI: 10.3390/biomedicines10092298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchyme Stem Cells (MSCs) are the most used types of stem cells in regenerative medicine. Regenerative medicine is a rapidly emerging medicine section that creates new methods to regrow, restore, and replace diseased and damaged tissues, organs, and cells. Scholars have shown a positive correlation between MSCs-based therapies and successful treatment of diseases like cardiac ischemia, cartilage problems, bone diseases, diabetes, and even neurological disorders. Although MSCs have several varying features that make them unique, their immuno-regulatory effects in tissue repair emerge from their secretion of paracrine growth factors, exosomes, and cytokines. These cells secrete a secretome, which has regenerative and reparative properties that lead to injury amelioration, immune modulation, or fibrosis reduction. Recent studies have shown that the administration MCSs derived conditioned medium (MSCs-CM) in acute doses in humans is safe and well-tolerated. Studies from animal models and human clinical trials have also shown that they are efficacious tools in regenerative medicine. In this review, we will explore the therapeutic potential of MSCs-CM in pulmonary fibrosis, with further insight into the treatment of Idiopathic Pulmonary Fibrosis (IPF).
Collapse
|
9
|
Chouaib B, Cuisinier F, Collart-Dutilleul PY. Dental stem cell-conditioned medium for tissue regeneration: Optimization of production and storage. World J Stem Cells 2022; 14:287-302. [PMID: 35662860 PMCID: PMC9136565 DOI: 10.4252/wjsc.v14.i4.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) effects on tissue regeneration are mainly mediated by their secreted substances (secretome), inducing their paracrine activity. This Conditioned medium (CM), including soluble factors (proteins, nucleic acids, lipids) and extracellular vesicles is emerging as a potential alternative to cell therapy. However, the manufacturing of CM suffers from variable procedures and protocols leading to varying results between studies. Besides, there is no well-defined optimized procedure targeting specific applications in regenerative medicine. AIM To focus on conditioned medium produced from dental MSC (DMSC-CM), we reviewed the current parameters and manufacturing protocols, in order to propose a standardization and optimization of these manufacturing procedures. METHODS We have selected all publications investigating the effects of dental MSC secretome in in vitro and in vivo models of tissue regeneration, in accordance with the PRISMA guidelines. RESULTS A total of 351 results were identified. And based on the inclusion criteria described above, 118 unique articles were included in the systematic review. DMSC-CM production was considered at three stages: before CM recovery (cell sources for CM), during CM production (culture conditions) and after production (CM treatment). CONCLUSION No clear consensus could be recovered as evidence-based methods, but we were able to describe the most commonly used protocols: donors under 30 years of age, dental pulp stem cells and exfoliated deciduous tooth stem cells with cell passage between 1 and 5, at a confluence of 70% to 80%. CM were often collected during 48 h, and stored at -80 °C. It is important to point out that the preconditioning environment had a significant impact on DMSC-CM content and efficiency.
Collapse
Affiliation(s)
- Batoul Chouaib
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | - Frédéric Cuisinier
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | | |
Collapse
|
10
|
Chouw A, Sartika CR, Milanda T, Faried A. Interleukins Profiling in Umbilical Cord Mesenchymal Stem Cell-Derived Secretome. Stem Cells Cloning 2022; 15:1-9. [PMID: 35444427 PMCID: PMC9015105 DOI: 10.2147/sccaa.s356763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Umbilical cord mesenchymal stem cells (UC-MSCs)-derived secretome is currently used in regenerative therapy. MSCs are believed to secrete a wide spectrum of bioactive molecules which give paracrine effects in immunomodulation and regenerative capacities. One group that was found in secretome is interleukins (ILs), a cytokine that plays an essential role in the process of proliferation, differentiation, maturation, migration, and adhesion of immune cells. However, as there are many types of ILs, the profile of ILs in the UC-MSCs-derived secretome has been limitedly reported. Therefore, in this study, we would like to profile and detect the interleukin concentration secreted by UC-MSCs. Methods UC-MSCs-derived secretome was collected from UC-MSCs passage 5 after 24- and 48-hour incubation (n=9). Secretome was filtered using 0.2 µm and stored at -80°C for further detection. All samples were normalized before the interleukin (IL-2, IL-4, IL-6, IL-9, IL-10, IL-12, IL-17A) detection using a MACSPlex Cytokine Kit. Results The IL-6 has the highest concentration among other interleukins in both groups and increases significantly (p<0.003) after incubation for 48 hours. The pro-inflammatory factors are decreasing while anti-inflammatory factors are increasing after 48-hour incubation. Discussion Our studies show that the UC-MSCs secrete pro- and anti-inflammatory interleukins. The concentration of anti-inflammatory interleukins shows to be increasing, while the pro-inflammatory interleukins are decreasing within the longer incubation time, but this not be applicable for IL-10 and IL-6. IL-6 has the highest concentration among other ILs. These results may provide important clues regarding when is the right time for secretome to be used in therapy patients, because all the molecules in the secretome can lead to many clinical manifestations.
Collapse
Affiliation(s)
- Angliana Chouw
- Doctoral Program, Faculty of Pharmacy Universitas Padjadjaran, Jatinangor, West Java, Indonesia
- Research and Development, Prodia StemCell Indonesia, Jakarta, DKI, Jakarta, Indonesia
| | - Cynthia Retna Sartika
- Research and Development, Prodia StemCell Indonesia, Jakarta, DKI, Jakarta, Indonesia
| | - Tiana Milanda
- Department of Biological Pharmacy, Faculty of Pharmacy Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Ahmad Faried
- Stem Cell Working Group, Faculty of Medicine Universitas Padjadjaran, Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
11
|
Zeng J, He K, Mai R, Lin T, Wei R, Nong J, Wu Y. Exosomes from human umbilical cord mesenchymal stem cells and human dental pulp stem cells ameliorate lipopolysaccharide-induced inflammation in human dental pulp stem cells. Arch Oral Biol 2022; 138:105411. [DOI: 10.1016/j.archoralbio.2022.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
|
12
|
Biscaia S, Branquinho MV, Alvites RD, Fonseca R, Sousa AC, Pedrosa SS, Caseiro AR, Guedes F, Patrício T, Viana T, Mateus A, Maurício AC, Alves N. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. Int J Mol Sci 2022; 23:2318. [PMID: 35216432 PMCID: PMC8880322 DOI: 10.3390/ijms23042318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Bone tissue engineering has been developed in the past decades, with the engineering of bone substitutes on the vanguard of this regenerative approach. Polycaprolactone-based scaffolds are fairly applied for bone regeneration, and several composites have been incorporated so as to improve the scaffolds' mechanical properties and tissue in-growth. In this study, hydroxyapatite is incorporated on polycaprolactone-based scaffolds at two different proportions, 80:20 and 60:40. Scaffolds are produced with two different blending methods, solvent casting and melt blending. The prepared composites are 3D printed through an extrusion-based technique and further investigated with regard to their chemical, thermal, morphological, and mechanical characteristics. In vitro cytocompatibility and osteogenic differentiation was also assessed with human dental pulp stem/stromal cells. The results show the melt-blending-derived scaffolds to present more promising mechanical properties, along with the incorporation of hydroxyapatite. The latter is also related to an increase in osteogenic activity and promotion. Overall, this study suggests polycaprolactone/hydroxyapatite scaffolds to be promising candidates for bone tissue engineering, particularly when produced by the MB method.
Collapse
Affiliation(s)
- Sara Biscaia
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Mariana V. Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Rui D. Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Rita Fonseca
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Ana Catarina Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- CBQF—Centre of Biotechnology and Fine Chemistry—Associated Laboratory, Faculty of Biotechnology, Catholic University of Portugal, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana R. Caseiro
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Vasco da Gama Research Center (CIVG)/Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Lordemão, 3020-210 Coimbra, Portugal
- Veterinary Clinics Department, Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Lordemão, 3020-210 Coimbra, Portugal
| | - Fernando Guedes
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Tatiana Patrício
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Tânia Viana
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Artur Mateus
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| | - Ana C. Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (M.V.B.); (R.D.A.); (A.C.S.); (S.S.P.); (A.R.C.); (F.G.)
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (S.B.); (R.F.); (T.P.); (T.V.); (A.M.); (N.A.)
| |
Collapse
|
13
|
Mi X, Jiao W, Yang Y, Qin Y, Chen ZJ, Zhao S. HGF Secreted by Mesenchymal Stromal Cells Promotes Primordial Follicle Activation by Increasing the Activity of the PI3K-AKT Signaling Pathway. Stem Cell Rev Rep 2022; 18:1834-1850. [PMID: 35089464 PMCID: PMC9209380 DOI: 10.1007/s12015-022-10335-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 01/08/2023]
Abstract
Primordial follicle activation is fundamental for folliculogenesis and for the maintenance of fertility. An effective therapeutic strategy for patients with premature ovarian insufficiency (POI) is to promote the activation of residual primordial follicles. The secretome of human umbilical cord mesenchymal stromal cells (hUC-MSC-sec) contains several components that might promote the activation of primordial follicles. In the present study, we revealed that treatment with the hUC-MSC-sec significantly increased the proportion of activated primordial follicles in mouse ovaries both in vitro and in vivo. The activating effects of hUC-MSC-sec on primordial follicles were attributed to the activation of the PI3K-AKT signaling pathway by hepatocyte growth factor (HGF). While the effect of the hUC-MSC-sec was attenuated by the neutralizing antibodies against HGF, application of exogenous HGF alone also promoted the activation of primordial follicles. Furthermore, we demonstrated that HGF promoted the expression of KITL in granulosa cells by binding with the HGF receptor c-Met, thereby increasing the activity of the PI3K-AKT signaling pathway to activate primordial follicles. Taken together, our findings demonstrate that hUC-MSC-sec promotes primordial follicle activation through the functional component HGF to increase the PI3K-AKT signaling activity, highlighting the application of the hUC-MSC-sec or HGF for the treatment of POI patients.
Collapse
Affiliation(s)
- Xin Mi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Wenlin Jiao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yajuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
14
|
Gugliandolo A, Mazzon E. Dental Mesenchymal Stem Cell Secretome: An Intriguing Approach for Neuroprotection and Neuroregeneration. Int J Mol Sci 2021; 23:ijms23010456. [PMID: 35008878 PMCID: PMC8745761 DOI: 10.3390/ijms23010456] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known for their beneficial effects and regenerative potential. In particular, dental-derived MSCs have the advantage of easier accessibility and a non-invasive isolation method. Moreover, thanks to their neural crest origin, dental MSCs seem to have a more prominent neuroregenerative potential. Indeed, in basal conditions they also express neuronal markers. However, it is now well known that the beneficial actions of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules released in the conditioned medium (CM) or in extracellular vesicles (EVs). In this review we focus on the applications of the secretome derived from dental MSCs for neuroregeneration and neuroprotection. The secretomes of different dental MSCs have been tested for their effects for neuroregenerative purposes, and the secretomes of dental pulp stem cells and stem cells from human exfoliated deciduous teeth are the most studied. Both the CM and EVs obtained from dental MSCs showed that they are able to promote neurite outgrowth and neuroprotective effects. Interestingly, dental-derived MSC secretome showed stronger neuroregenerative and neuroprotective effects compared to that obtained from other MSC sources. For these reasons, the secretome obtained from dental MSCs may represent a promising approach for neuroprotective treatments.
Collapse
|
15
|
Looking at time dependent differentiation of mesenchymal stem cells by culture media using MALDI-TOF-MS. Cell Tissue Bank 2021; 23:653-668. [PMID: 34545506 DOI: 10.1007/s10561-021-09963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells which are popular in human regenerative medicine. These cells can renew themselves and differentiate into several specialized cell types including osteoblasts, adipocytes, and chondrocytes under physiological and experimental conditions. MSCs can secret a lot of components including proteins and metabolites. These components have significant effects on their surrounding cells and also can be used to characterize them. This characterization of multipotent MSCs plays a critical role in their therapeutic potential. The metabolic profile of culture media verified by applying matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) techniques. Also, the differentiation and development of MSCs have monitored through culture media metabolome or secretome (secreted metabolites). Totally, 24 potential metabolites were identified. Between them 12 metabolites are unique to BM-MSCs and 5 metabolites are unique to AD-MSCs. Trilineage differentiation including chondrocytes, osteoblasts, and adipocytes, as well as metabolites that are being differentiated, have been shown in different weeks. In the present study, the therapeutic effects of MSCs analyzed by decoding the metabolome for MSCs secretome via metabolic profiling using MALDI-TOF-MS techniques.
Collapse
|
16
|
In Vitro and In Vivo Characterization of PLLA-316L Stainless Steel Electromechanical Devices for Bone Tissue Engineering-A Preliminary Study. Int J Mol Sci 2021; 22:ijms22147655. [PMID: 34299274 PMCID: PMC8303773 DOI: 10.3390/ijms22147655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Bone injuries represent a major social and financial impairment, commonly requiring surgical intervention due to a limited healing capacity of the tissue, particularly regarding critical-sized defects and non-union fractures. Regenerative medicine with the application of bone implants has been developing in the past decades towards the manufacturing of appropriate devices. This work intended to evaluate medical 316L stainless steel (SS)-based devices covered by a polymer poly (L-lactic acid) (PLLA) coating for bone lesion mechanical and functional support. SS316L devices were subjected to a previously described silanization process, following a three-layer PLLA film coating. Devices were further characterized and evaluated towards their cytocompatibility and osteogenic potential using human dental pulp stem cells, and biocompatibility via subcutaneous implantation in a rat animal model. Results demonstrated PLLA-SS316L devices to present superior in vitro and in vivo outcomes and suggested the PLLA coating to provide osteo-inductive properties to the device. Overall, this work represents a preliminary study on PLLA-SS316L devices' potential towards bone tissue regenerative techniques, showing promising outcomes for bone lesion support.
Collapse
|
17
|
Bispo DSC, Jesus CSH, Marques IMC, Romek KM, Oliveira MB, Mano JF, Gil AM. Metabolomic Applications in Stem Cell Research: a Review. Stem Cell Rev Rep 2021; 17:2003-2024. [PMID: 34131883 DOI: 10.1007/s12015-021-10193-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
This review describes the use of metabolomics to study stem cell (SC) characteristics and function, excluding SCs in cancer research, suited to a fully dedicated text. The interest in employing metabolomics in SC research has consistently grown and emphasis is, here, given to developments reported in the past five years. This text informs on the existing methodologies and their complementarity regarding the information provided, comprising untargeted/targeted approaches, which couple mass spectrometry or nuclear magnetic resonance spectroscopy with multivariate analysis (and, in some cases, pathway analysis and integration with other omics), and more specific analytical approaches, namely isotope tracing to highlight particular metabolic pathways, or in tandem microscopic strategies to pinpoint characteristics within a single cell. The bulk of this review covers the existing applications in various aspects of mesenchymal SC behavior, followed by pluripotent and neural SCs, with a few reports addressing other SC types. Some of the central ideas investigated comprise the metabolic/biological impacts of different tissue/donor sources and differentiation conditions, including the importance of considering 3D culture environments, mechanical cues and/or media enrichment to guide differentiation into specific lineages. Metabolomic analysis has considered cell endometabolomes and exometabolomes (fingerprinting and footprinting, respectively), having measured both lipid species and polar metabolites involved in a variety of metabolic pathways. This review clearly demonstrates the current enticing promise of metabolomics in significantly contributing towards a deeper knowledge on SC behavior, and the discovery of new biomarkers of SC function with potential translation to in vivo clinical practice.
Collapse
Affiliation(s)
- Daniela S C Bispo
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina S H Jesus
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Inês M C Marques
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Katarzyna M Romek
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Pinto PO, Branquinho MV, Caseiro AR, Sousa AC, Brandão A, Pedrosa SS, Alvites RD, Campos JM, Santos FL, Santos JD, Mendonça CM, Amorim I, Atayde LM, Maurício AC. The application of Bonelike® Poro as a synthetic bone substitute for the management of critical-sized bone defects - A comparative approach to the autograft technique - A preliminary study. Bone Rep 2021; 14:101064. [PMID: 33981810 PMCID: PMC8082556 DOI: 10.1016/j.bonr.2021.101064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The effective treatment of non-unions and critical-sized defects remains a challenge in the orthopedic field. From a tissue engineering perspective, this issue can be addressed through the application bioactive matrixes to support bone regeneration, such as Bonelike®, as opposed to the widespread autologous grafting technique. An improved formulation of Bonelike® Poro, was assessed as a synthetic bone substitute in an ovine model for critical-sized bone defects. Bone regeneration was assessed after 5 months of recovery through macro and microscopic analysis of the healing features of the defect sites. Both the application of natural bone graft or Bonelike® Poro resulted in bridging of the defects margins. Untreated defect remained as fibrous non-unions at the end of the study period. The characteristics of the newly formed bone and its integration with the host tissue were assessed through histomorphometric and histological analysis, which demonstrated Bonelike® Poro to result in improved healing of the defects. The group treated with synthetic biomaterial presented bone bridges of increased thickness and bone features that more closely resembled the native spongeous and cortical bone. The application of Bonelike® Poro enabled the regeneration of critical-sized lesions and performed comparably to the autograph technique, validating its octeoconductive and osteointegrative potential for clinical application as a therapeutic strategy in human and veterinary orthopedics.
Collapse
Affiliation(s)
- P O Pinto
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - M V Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A R Caseiro
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - A C Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A Brandão
- Biosckin, Molecular and Cell Therapies, SA, Parque de Ciência e Tecnologia da Maia, Rua Eng. Frederico Ulrich, 2650, 4470-605 Moreira da Maia, Portugal
| | - S S Pedrosa
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - R D Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - J M Campos
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - F L Santos
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - J D Santos
- Network of Chemistry and Technology - Associated Laboratory for Green Chemistry (REQUIMTE-LAQV), Department of Metallurgy and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - C M Mendonça
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - I Amorim
- Department of Pathology and Molecular Immunology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Rua Jorge Viterbo Ferreira, n ° 228, 4050-313 Porto, Portugal.,Institute of Research and Innovation in Health (i3S), University of Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - L M Atayde
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A C Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
19
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Henriksen JL, Sørensen NB, Fink T, Zachar V, Porsborg SR. Systematic Review of Stem-Cell-Based Therapy of Burn Wounds: Lessons Learned from Animal and Clinical Studies. Cells 2020; 9:E2545. [PMID: 33256038 PMCID: PMC7761075 DOI: 10.3390/cells9122545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment of severe burn wounds presents a daunting medical challenge, and novel approaches promoting healing and reducing scarring are highly desirable. The application of mesenchymal stem/stromal cells (MSCs) has been suggested as a novel treatment. In this paper, we present systematic reviews of pre-clinical and clinical studies of MSC therapy for second- or third-degree thermal burn wounds. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, the PubMed and Embase databases were searched, and interventional studies of MSC therapy using rodent models (21 studies) or human burn patients (three studies) were included in the pre-clinical and clinical reviews, respectively, where both overall outcome and wound-healing-phase-specific methodologies and effects were assessed. The pre-clinical studies demonstrated a promising effect of the application of MSCs on several wound healing phases. The clinical studies also suggested that the MSC treatment was beneficial, particularly in the remodeling phase. However, the limited number of studies, their lack of homogeneity in study design, relatively high risk of bias, lack of reporting on mode of action (MOA), and discontinuity of evidence restrict the strength of these findings. This comprehensive review presents an overview of available methodologies to assess the MOA of MSC treatment for distinct wound healing phases. Furthermore, it includes a set of recommendations for the design of high-quality clinical studies that can determine the efficacy of MSCs as a therapy for burn wounds.
Collapse
Affiliation(s)
- Josefine Lin Henriksen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; (J.L.H.); (N.B.S.)
| | - Nana Brandborg Sørensen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; (J.L.H.); (N.B.S.)
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| | - Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| |
Collapse
|
21
|
Coelho A, Alvites RD, Branquinho MV, Guerreiro SG, Maurício AC. Mesenchymal Stem Cells (MSCs) as a Potential Therapeutic Strategy in COVID-19 Patients: Literature Research. Front Cell Dev Biol 2020; 8:602647. [PMID: 33330498 PMCID: PMC7710935 DOI: 10.3389/fcell.2020.602647] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
In 2019, an outbreak of an unknown coronavirus - SARS-CoV-2 - responsible for COVID-19 disease, was first reported in China, and evolved into a pandemic of huge dimensions and raised serious concerns for global health. The number of critical cases continues to increase dramatically, while vaccines and specific treatments are not yet available. There are several strategies currently being studied for the treatment of adverse symptoms of COVID-19, that encompass Acute Lung Injury (ALI)/Acute Respiratory Distress Syndrome (ARDS), extensive pulmonary inflammation, cytokine storm, and pulmonary edema, due to virus-induced pneumonia. Mesenchymal stem cells (MSCs) are at the origin of new revolutionary treatments, which may come to be applied in such as Regenerative Medicine, Immunotherapy, Tissue Engineering, and Cell and Molecular Biology due to immunomodulation and anti-inflammatory activity. MSCs have already been studied with positive outcomes for other lung pathologies, thus representing and being identified as an important opportunity for the treatment of COVID-19. It has recently been shown that these cells allow hopeful and effective therapies for serious or critical COVID-19, minimizing its adverse symptoms. In this study we will analyze the MSCs, their origin, differentiation, and therapeutic potential, making a bridge with the COVID-19 disease and its characteristics, as a potential therapeutic strategy but also reporting recent studies where these cell-based therapies were used for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- André Coelho
- Biotecnologia Medicinal, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Rui Damásio Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
| | - Mariana Vieira Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
| | - Susana G. Guerreiro
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Bazzoni R, Takam Kamga P, Tanasi I, Krampera M. Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells. Front Cell Dev Biol 2020; 8:596079. [PMID: 33240892 PMCID: PMC7677193 DOI: 10.3389/fcell.2020.596079] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in the stromal tissues of the body and capable of promoting tissue repair and attenuating inflammatory processes through their immunomodulatory properties. Preclinical and clinical observations revealed that not only direct intercellular communication mediates MSC properties; in fact, a pivotal role is also played by the release of soluble and bioactive factors, such as cytokines, growth factor and extracellular vesicles (EVs). EVs are membrane-coated vesicles containing a large variety of bioactive molecules, including lipids, proteins, and nucleic acids, such as RNA. EVs release their contents into target cells, thus influencing cell fate through the control of intracellular processes. In addition, MSC-derived EVs can mediate modulatory effects toward different effector cells belonging to both innate and adaptive immunity. In this review, we will discuss the literature data concerning MSC-derived EVs, including the current standardized methods for their isolation and characterization, the mechanisms supporting their immunoregulatory properties, and their potential clinical application as alternative to MSC-based therapy for inflammatory reactions, such as graft-versus-host disease (GvHD).
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Potential Therapeutic Effects of Exosomes in Regenerative Endodontics. Arch Oral Biol 2020; 120:104946. [PMID: 33129129 DOI: 10.1016/j.archoralbio.2020.104946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This review aims to describe the basic characteristics of exosomes, and summarize their possible source and potential biological effects in pulp regeneration, providing new insights into the therapeutic role of exosomes for regenerative endodontics in the future. DESIGN A comprehensive review of scientific literature related to exosomes potentially used for pulp regeneration was conducted. RESULTS Dental mesenchymal stem cells (MSCs) play an important role in dental pulp regeneration. MSC-derived exosomes, as important biotransmitters in intercellular communication, have been shown to replicate the therapeutic effects of their parental cells. These exosomes have better stability, lower immunogenicity, higher safety and clinical efficiency, making it possible to apply them in pulp regeneration. Existing research suggests that exosomes could trigger the regeneration of dentin/pulp-like tissue in vivo, which may attribute to their role in promoting pulp angiogenesis, regulating dental cell proliferation, migration and differentiation, and providing neuroprotection. CONCLUSIONS The applications of exosomes in the treatment of pulp regeneration have great potential, and exosomes may become ideal therapeutic biomaterial in regenerative endodontics.
Collapse
|
24
|
Romanov YA, Vtorushina VV, Dugina TN, Romanov AY, Petrova NV, Sukhikh GT. Human Umbilical Cord Tissue-Derived Multipotent Mesenchymal Stromal Cells Exhibit Maximum Secretory Activity in the Presence of Umbilical Cord Blood Serum. Bull Exp Biol Med 2020; 169:544-548. [PMID: 32910388 DOI: 10.1007/s10517-020-04926-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 01/08/2023]
Abstract
Using multiplex analysis, we performed a comparative study of cytokine and growth factor production by human umbilical cord tissue-derived multipotent mesenchymal stromal cells (UC-MSC) cultured under standard conditions and in the presence of human umbilical cord blood serum (UCBS). It was found that the secretion of most studied molecules, including well-known inductors of regeneration HGF, G-CSF, GM-CSF, and VEGF by UCMSC considerably increased in the presence of 5% UCBS. The use of UCBS allows not only obtaining xenogenic-free cellular and cell-free therapeutic products, but also increasing the secretion of most biologically active molecules capable of stimulating repair processes.
Collapse
Affiliation(s)
- Yu A Romanov
- National Medical Research Center for Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia. .,CryoCenter Cord Blood Bank, Moscow, Russia.
| | - V V Vtorushina
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - T N Dugina
- CryoCenter Cord Blood Bank, Moscow, Russia
| | - A Yu Romanov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - G T Sukhikh
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|