1
|
Chen J, Chen M, Yu X. Fluorescent probes in autoimmune disease research: current status and future prospects. J Transl Med 2025; 23:411. [PMID: 40205498 PMCID: PMC11984237 DOI: 10.1186/s12967-025-06430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Autoimmune diseases (AD) present substantial challenges for early diagnosis and precise treatment due to their intricate pathogenesis and varied clinical manifestations. While existing diagnostic methods and treatment strategies have advanced, their sensitivity, specificity, and real-time applicability in clinical settings continue to exhibit significant limitations. In recent years, fluorescent probes have emerged as highly sensitive and specific biological imaging tools, demonstrating substantial potential in AD research.This review examines the response mechanisms and historical evolution of various types of fluorescent probes, systematically summarizing the latest research advancements in their application to autoimmune diseases. It highlights key applications in biomarker detection, dynamic monitoring of immune cell functions, and assessment of drug treatment efficacy. Furthermore, this article analyzes the technical challenges currently encountered in probe development and proposes potential directions for future research. With ongoing advancements in materials science, nanotechnology, and bioengineering, fluorescent probes are anticipated to achieve higher sensitivity and enhanced functional integration, thereby facilitating early detection, dynamic monitoring, and innovative treatment strategies for autoimmune diseases. Overall, fluorescent probes possess substantial scientific significance and application value in both research and clinical settings related to autoimmune diseases, signaling a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Junli Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Nekhaeva TL, Laskov ID, Fedoros EI, Danilova AB, Yurova MN, Tyndyk ML, Ermakova ED, Emelyanova NV, Efremova NA, Grigorevskaya AV, Nekrasova MA, Baldueva IA. Approbation of a Homologous Model of the Antitumor Vaccine Based on Mature Mouse Dendritic Cells to Study the Biodistribution of the Cell Product. Bull Exp Biol Med 2024:10.1007/s10517-024-06226-5. [PMID: 39287724 DOI: 10.1007/s10517-024-06226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 09/19/2024]
Abstract
Homologous animal cell product was obtained in protocol developed for female BALB/c mice. Dendritic cell (DC) migration from the injection site into the draining lymph nodes was evaluated. The number of DC labeled with carboxyfluorescein succinimidyl ester (CFSE) in draining lymph nodes increased from 5.3% (16 h) to 13.3% (48 h) (p=0.028) with a maximum at 72 h (15.4%, p=0.003). The immunophenotype of CFSE-DC detected in murine lymph nodes corresponded to the immunophenotype of mature vaccine DCs: they expressed differentiation markers CD11c, CD80, CD83, and CD86 (p>0.05 vs initial DC).
Collapse
Affiliation(s)
- T L Nekhaeva
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
| | - I D Laskov
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - E I Fedoros
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - A B Danilova
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M N Yurova
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M L Tyndyk
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - E D Ermakova
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - N V Emelyanova
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - N A Efremova
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - A V Grigorevskaya
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M A Nekrasova
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - I A Baldueva
- N. N. Petrov National Medical Cancer Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
3
|
Zhao X, Zhao C, Yang L, Jiang L, Zhang J, Yu X, Chen G, Zhu H, Tang W, Li Y, Wei M, Zhang X, Jia H. Spatial and Temporal Persistence of Fluorescent Lactiplantibacillus plantarum RS-09 in Intestinal Tract. Front Microbiol 2022; 13:843650. [PMID: 35432246 PMCID: PMC9006167 DOI: 10.3389/fmicb.2022.843650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The beneficial effects of the probiotic strain Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) are based on its adherence and colonization ability in the gut. However, little is known about the migration and long-term gut colonization of the strain. This study evaluated the gut colonization modes of Lactiplantibacillus plantarum RS-09 to identify the strain with long-term gut colonization potential. We established CFDA/SE-labeled RS-09 to study the temporal and spatial distribution of RS-09 in the intestine as well as to analyze its persistence in different parts of the intestine by flow cytometry. This study has shown that the RS-09 strain maintains strong adhesion abilities under acid (pH 2.5) and base (pH 8.5) conditions. In addition, CFDA/SE can be used as an indicator for the labeling of L. plantarum RS-09 in the intestinal tract in vivo. We established a growth kinetics model of RS-09 to elucidate its persistence in the intestine. In vivo persistence experiments showed that the persistence rate of RS-09 was the highest in the cecum (69.5%) and the lowest in the duodenum (12.8%) at 96 h. After 20 days, RS-09 was predominantly localized in the cecum and colon steadily. These studies provide new insights into the long-term persistence of L. plantarum in the gastrointestinal tract. The CFDA/SE label system may be used to study the in vivo colonization dynamics of other probiotic strains.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- School of Life Sciences, Ludong University, Yantai, China
| | - Chenpei Zhao
- School of Life Sciences, Ludong University, Yantai, China
| | - Leining Yang
- Department of Prosthodontics, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China.,Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China.,Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China.,Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Guozhong Chen
- School of Life Sciences, Ludong University, Yantai, China.,Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China.,Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Maolian Wei
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China.,Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Larsson AP, Briheim K, Hanna V, Gustafsson K, Starkenberg A, Vintertun HN, Kratz G, Junker JPE. Transplantation of autologous cells and porous gelatin microcarriers to promote wound healing. Burns 2020; 47:601-610. [PMID: 32843238 DOI: 10.1016/j.burns.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
Abstract
Definitive treatment to achieve wound healing in major burns frequently include skin transplantation, where split-thickness skin grafts is considered gold standard. This method is associated with several drawbacks. To overcome these hurdles, efforts have been made to develop tissue engineered skin substitutes, often comprised of a combination of cells and biomaterials. In the present study, we aimed to investigate transplantation of autologous keratinocytes and fibroblasts seeded on porous gelatin microcarriers using a porcine wound model. Pre-seeded microcarriers were transplanted to a total of 168 surgical full-thickness wounds (2cm diameter) on eight adult female pigs and covered with occlusive dressings. The experimental groups included wounds transplanted with microcarriers seeded with the combination of keratinocytes and fibroblasts, microcarriers seeded with each cell type individually, microcarriers without cells, each cell type in suspension, and NaCl control. Wounds were allowed to heal for one, two, four or eight weeks before being excised and fixated for subsequent histological and immunohistochemical analysis. In vitro, we confirmed that viable cells populate the surface and the pores of the microcarriers. In vivo, the microcarriers were to a large extent degraded after two weeks. After one week, all treatment groups, with the exception of microcarriers alone, displayed significantly thicker neo-epidermis compared to controls. After two weeks, wounds transplanted with microcarriers seeded with cells displayed significantly thicker neo-epidermis compared to controls. After four weeks there was no difference in the thickness of neo-epidermis. In conclusion, the experiments performed illustrate that autologous cells seeded on porous gelatin microcarriers stimulates the re-epithelialization of wounds. This method could be a promising candidate for skin transplantation. Future studies will focus on additional outcome parameters to evaluate long-term quality of healing following transplantation.
Collapse
Affiliation(s)
- Alexander P Larsson
- Laboratory for Experimental Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden.
| | - Kristina Briheim
- Laboratory for Experimental Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Victor Hanna
- Laboratory for Experimental Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karin Gustafsson
- Laboratory for Experimental Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Annika Starkenberg
- Laboratory for Experimental Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hans N Vintertun
- Laboratory for Experimental Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Gunnar Kratz
- Laboratory for Experimental Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Johan P E Junker
- Laboratory for Experimental Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|