1
|
Naufel MF, Pedroso AP, de Souza AP, Boldarine VT, Oyama LM, Lo Turco EG, Hachul H, Ribeiro EB, Telles MM. Targeted Analysis of Plasma Polar Metabolites in Postmenopausal Depression. Metabolites 2024; 14:286. [PMID: 38786763 PMCID: PMC11123176 DOI: 10.3390/metabo14050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Depression will be the disease with the highest incidence worldwide by 2030. Data indicate that postmenopausal women have a higher incidence of mood disorders, and this high vulnerability seems to be related to hormonal changes and weight gain. Although research evaluating the profile of metabolites in mood disorders is advancing, further research, maintaining consistent methodology, is necessary to reach a consensus. Therefore, the objective of the present study was to carry out an exploratory analysis of the plasma polar metabolites of pre- and postmenopausal women to explore whether the profile is affected by depression. The plasma analysis of 50 polar metabolites was carried out in a total of 67 postmenopausal women, aged between 50 and 65 years, either without depression (n = 25) or with depression symptoms (n = 42), which had spontaneous onset of menopause and were not in use of hormone replacement therapy, insulin, or antidepressants; and in 42 healthy premenopausal women (21 without depression and 21 with depression symptoms), aged between 40 and 50 years and who were not in use of contraceptives, insulin, or antidepressants. Ten metabolites were significantly affected by depression symptoms postmenopause, including adenosine (FDR = 3.778 × 10-14), guanosine (FDR = 3.001 × 10-14), proline (FDR = 1.430 × 10-6), citrulline (FDR = 0.0001), lysine (FDR = 0.0004), and carnitine (FDR = 0.0331), which were down-regulated, and dimethylglycine (FDR = 0.0022), glutathione (FDR = 0.0048), creatine (FDR = 0.0286), and methionine (FDR = 0.0484) that were up-regulated. In premenopausal women with depression, oxidized glutathione (FDR = 0.0137) was down-regulated, and dimethylglycine (FDR = 0.0406) and 4-hydroxyproline (FDR = 0.0433) were up-regulated. The present study provided new data concerning the consequences of depression on plasma polar metabolites before and after the establishment of menopause. The results demonstrated that the postmenopausal condition presented more alterations than the premenopausal period and may indicate future measures to treat the disturbances involved in both menopause and depression.
Collapse
Affiliation(s)
- Maria Fernanda Naufel
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu 862, Vila Clementino, São Paulo 04023-062, SP, Brazil; (A.P.P.); (A.P.d.S.); (V.T.B.); (L.M.O.); (M.M.T.)
| | - Amanda Paula Pedroso
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu 862, Vila Clementino, São Paulo 04023-062, SP, Brazil; (A.P.P.); (A.P.d.S.); (V.T.B.); (L.M.O.); (M.M.T.)
| | - Adriana Pereira de Souza
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu 862, Vila Clementino, São Paulo 04023-062, SP, Brazil; (A.P.P.); (A.P.d.S.); (V.T.B.); (L.M.O.); (M.M.T.)
| | - Valter Tadeu Boldarine
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu 862, Vila Clementino, São Paulo 04023-062, SP, Brazil; (A.P.P.); (A.P.d.S.); (V.T.B.); (L.M.O.); (M.M.T.)
| | - Lila Missae Oyama
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu 862, Vila Clementino, São Paulo 04023-062, SP, Brazil; (A.P.P.); (A.P.d.S.); (V.T.B.); (L.M.O.); (M.M.T.)
| | | | - Helena Hachul
- Department of Psychobiology, UNIFESP-EPM, São Paulo 04023-062, SP, Brazil;
- Department Gynaecology, UNIFESP-EPM, São Paulo 04023-062, SP, Brazil
| | - Eliane Beraldi Ribeiro
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu 862, Vila Clementino, São Paulo 04023-062, SP, Brazil; (A.P.P.); (A.P.d.S.); (V.T.B.); (L.M.O.); (M.M.T.)
| | - Mônica Marques Telles
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu 862, Vila Clementino, São Paulo 04023-062, SP, Brazil; (A.P.P.); (A.P.d.S.); (V.T.B.); (L.M.O.); (M.M.T.)
| |
Collapse
|
2
|
Risi E, Lisanti C, Vignoli A, Biagioni C, Paderi A, Cappadona S, Monte FD, Moretti E, Sanna G, Livraghi L, Malorni L, Benelli M, Puglisi F, Luchinat C, Tenori L, Biganzoli L. Risk assessment of disease recurrence in early breast cancer: A serum metabolomic study focused on elderly patients. Transl Oncol 2023; 27:101585. [PMID: 36403505 PMCID: PMC9676351 DOI: 10.1016/j.tranon.2022.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We previously showed that metabolomics predicts relapse in early breast cancer (eBC) patients, unselected by age. This study aims to identify a "metabolic signature" that differentiates eBC from advanced breast cancer (aBC) patients, and to investigate its potential prognostic role in an elderly population. METHODS Serum samples from elderly breast cancer (BC) patients enrolled in 3 onco-geriatric trials, were retrospectively analyzed via proton nuclear magnetic resonance (1H NMR) spectroscopy. Three nuclear magnetic resonance (NMR) spectra were acquired for each serum sample: NOESY1D, CPMG, Diffusion-edited. Random Forest (RF) models to predict BC relapse were built on NMR spectra, and resulting RF risk scores were evaluated by Kaplan-Meier curves. RESULTS Serum samples from 140 eBC patients and 27 aBC were retrieved. In the eBC cohort, median age was 76 years; 77% of patients had luminal, 10% HER2-positive and 13% triple negative (TN) BC. Forty-two percent of patients had tumors >2 cm, 43% had positive axillary nodes. Using NOESY1D spectra, the RF classifier discriminated free-from-recurrence eBC from aBC with sensitivity, specificity and accuracy of 81%, 67% and 70% respectively. We tested the NOESY1D spectra of each eBC patient on the RF models already calculated. We found that patients classified as "high risk" had higher risk of disease recurrence (hazard ratio (HR) 3.42, 95% confidence interval (CI) 1.58-7.37) than patients at low-risk. CONCLUSIONS This analysis suggests that a "metabolic signature", identified employing NMR fingerprinting, is able to predict the risk of disease recurrence in elderly patients with eBC independently from standard clinicopathological features.
Collapse
Affiliation(s)
- Emanuela Risi
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Camilla Lisanti
- Cro Aviano - National Cancer Institute - IRCCS, Medical Oncology and Cancer Prevention, Aviano, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | | | - Agnese Paderi
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Silvia Cappadona
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Francesca Del Monte
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Erica Moretti
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Giuseppina Sanna
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Luca Livraghi
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Luca Malorni
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy
| | | | - Fabio Puglisi
- Cro Aviano - National Cancer Institute - IRCCS, Medical Oncology and Cancer Prevention, Aviano, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | - Laura Biganzoli
- Sandro Pitigliani Medical Oncology Department, Hospital of Prato, Prato, Italy.
| |
Collapse
|
3
|
Gill NP, Balasubramanian R, Bain JR, Muehlbauer MJ, Lowe WL, Scholtens DM. Path-level interpretation of Gaussian graphical models using the pair-path subscore. BMC Bioinformatics 2022; 23:12. [PMID: 34986802 PMCID: PMC8729005 DOI: 10.1186/s12859-021-04542-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND : Construction of networks from cross-sectional biological data is increasingly common. Many recent methods have been based on Gaussian graphical modeling, and prioritize estimation of conditional pairwise dependencies among nodes in the network. However, challenges remain on how specific paths through the resultant network contribute to overall 'network-level' correlations. For biological applications, understanding these relationships is particularly relevant for parsing structural information contained in complex subnetworks. RESULTS: We propose the pair-path subscore (PPS), a method for interpreting Gaussian graphical models at the level of individual network paths. The scoring is based on the relative importance of such paths in determining the Pearson correlation between their terminal nodes. PPS is validated using human metabolomics data from the Hyperglycemia and adverse pregnancy outcome (HAPO) study, with observations confirming well-documented biological relationships among the metabolites. We also highlight how the PPS can be used in an exploratory fashion to generate new biological hypotheses. Our method is implemented in the R package pps, available at https://github.com/nathan-gill/pps . CONCLUSIONS: The PPS can be used to probe network structure on a finer scale by investigating which paths in a potentially intricate topology contribute most substantially to marginal behavior. Adding PPS to the network analysis toolkit may enable researchers to ask new questions about the relationships among nodes in network data.
Collapse
Affiliation(s)
- Nathan P Gill
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts - Amherst, Amherst, MA, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA.,Duke Molecular Physiology Institute, Durham, NC, USA.,Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA.,Duke Molecular Physiology Institute, Durham, NC, USA.,Duke University School of Medicine, Durham, NC, USA
| | - William L Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
4
|
Li Z, Zhang Y, Hoene M, Fritsche L, Zheng S, Birkenfeld A, Fritsche A, Peter A, Liu X, Zhao X, Zhou L, Luo P, Weigert C, Lin X, Xu G, Lehmann R. Diagnostic Performance of Sex-Specific Modified Metabolite Patterns in Urine for Screening of Prediabetes. Front Endocrinol (Lausanne) 2022; 13:935016. [PMID: 35909528 PMCID: PMC9333093 DOI: 10.3389/fendo.2022.935016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
AIMS/HYPOTHESIS Large-scale prediabetes screening is still a challenge since fasting blood glucose and HbA1c as the long-standing, recommended analytes have only moderate diagnostic sensitivity, and the practicability of the oral glucose tolerance test for population-based strategies is limited. To tackle this issue and to identify reliable diagnostic patterns, we developed an innovative metabolomics-based strategy deviating from common concepts by employing urine instead of blood samples, searching for sex-specific biomarkers, and focusing on modified metabolites. METHODS Non-targeted, modification group-assisted metabolomics by liquid chromatography-mass spectrometry (LC-MS) was applied to second morning urine samples of 340 individuals from a prediabetes cohort. Normal (n = 208) and impaired glucose-tolerant (IGT; n = 132) individuals, matched for age and BMI, were randomly divided in discovery and validation cohorts. ReliefF, a feature selection algorithm, was used to extract sex-specific diagnostic patterns of modified metabolites for the detection of IGT. The diagnostic performance was compared with conventional screening parameters fasting plasma glucose (FPG), HbA1c, and fasting insulin. RESULTS Female- and male-specific diagnostic patterns were identified in urine. Only three biomarkers were identical in both. The patterns showed better AUC and diagnostic sensitivity for prediabetes screening of IGT than FPG, HbA1c, insulin, or a combination of FPG and HbA1c. The AUC of the male-specific pattern in the validation cohort was 0.889 with a diagnostic sensitivity of 92.6% and increased to an AUC of 0.977 in combination with HbA1c. In comparison, the AUCs of FPG, HbA1c, and insulin alone reached 0.573, 0.668, and 0.571, respectively. Validation of the diagnostic pattern of female subjects showed an AUC of 0.722, which still exceeded the AUCs of FPG, HbA1c, and insulin (0.595, 0.604, and 0.634, respectively). Modified metabolites in the urinary patterns include advanced glycation end products (pentosidine-glucuronide and glutamyl-lysine-sulfate) and microbiota-associated compounds (indoxyl sulfate and dihydroxyphenyl-gamma-valerolactone-glucuronide). CONCLUSIONS/INTERPRETATION Our results demonstrate that the sex-specific search for diagnostic metabolite biomarkers can be superior to common metabolomics strategies. The diagnostic performance for IGT detection was significantly better than routinely applied blood parameters. Together with recently developed fully automatic LC-MS systems, this opens up future perspectives for the application of sex-specific diagnostic patterns for prediabetes screening in urine.
Collapse
Affiliation(s)
- Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yanhui Zhang
- School of Computer Science & Technology, Dalian University of Technology, Dalian, China
| | - Miriam Hoene
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Andreas Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Internal Medicine 4, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Internal Medicine 4, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ping Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Cora Weigert
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Xiaohui Lin
- School of Computer Science & Technology, Dalian University of Technology, Dalian, China
- *Correspondence: Guowang Xu, ; Rainer Lehmann,
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- *Correspondence: Guowang Xu, ; Rainer Lehmann,
| | - Rainer Lehmann
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- *Correspondence: Guowang Xu, ; Rainer Lehmann,
| |
Collapse
|
5
|
Di Cesare F, Luchinat C, Tenori L, Saccenti E. Age and sex dependent changes of free circulating blood metabolite and lipid abundances, correlations and ratios. J Gerontol A Biol Sci Med Sci 2021; 77:918-926. [PMID: 34748631 PMCID: PMC9071469 DOI: 10.1093/gerona/glab335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated how the concentrations, pairwise correlations and ratios of 202 free circulating blood metabolites and lipids vary with age in a panel of n = 1 882 participants with an age range from 48 to 94 years. We report a statistically significant sex-dependent association with age of a panel of metabolites and lipids involving, in women, linoleic acid, α-linoleic acid, and carnitine, and, in men, monoacylglycerols and lysophosphatidylcholines. Evaluating the association of correlations among metabolites and/or lipids with age, we found that phosphatidylcholines correlations tend to have a positive trend associated with age in women, and monoacylglycerols and lysophosphatidylcholines correlations tend to have a negative trend associated with age in men. The association of ratio between molecular features with age reveals that decanoyl-l-carnitine/lysophosphatidylcholine ratio in women “decrease” with age, while l-carnitine/phosphatidylcholine and l-acetylcarnitine/phosphatidylcholine ratios in men “increase” with age. These results suggest an age-dependent remodeling of lipid metabolism that induces changes in cell membrane bilayer composition and cell cycle mechanisms. Furthermore, we conclude that lipidome is directly involved in this age-dependent differentiation. Our results demonstrate that, using a comprehensive approach focused on the changes of concentrations and relationships of blood metabolites and lipids, as expressed by their correlations and ratios, it is possible to obtain relevant information about metabolic dynamics associated with age.
Collapse
Affiliation(s)
- Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi, Sesto Fiorentino, Firenze, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi, Sesto Fiorentino, Firenze, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi, Sesto Fiorentino, Firenze, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, Sesto Fiorentino, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng, Wageningen, the Netherlands
| |
Collapse
|
6
|
Grading of endometrial cancer using 1H HR-MAS NMR-based metabolomics. Sci Rep 2021; 11:18160. [PMID: 34518615 PMCID: PMC8438077 DOI: 10.1038/s41598-021-97505-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
The tissue metabolomic characteristics associated with endometrial cancer (EC) at different grades were studied using high resolution (400 MHz) magic angle spinning (HR-MAS) proton spectroscopy. The metabolic profiles were obtained from 64 patients (14 with grade 1 (G1), 33 with grade 2 (G2) and 17 with grade 3 (G3) tumors) and compared with the profile acquired from 10 patients with the benign disorders. OPLS-DA revealed increased valine, isoleucine, leucine, hypotaurine, serine, lysine, ethanolamine, choline and decreased creatine, creatinine, glutathione, ascorbate, glutamate, phosphoethanolamine and scyllo-inositol in all EC grades in reference to the non-transformed tissue. The increased levels of taurine was additionally detected in the G1 and G2 tumors in comparison to the control tissue, while the elevated glycine, N-acetyl compound and lactate—in the G1 and G3 tumors. The metabolic features typical for the G1 tumors are the increased dimethyl sulfone, phosphocholine, and decreased glycerophosphocholine and glutamine levels, while the decreased myo-inositol level is characteristic for the G2 and G3 tumors. The elevated 3-hydroxybutyrate, alanine and betaine levels were observed in the G3 tumors. The differences between the grade G1 and G3 malignances were mainly related to the perturbations of phosphoethanolamine and phosphocholine biosynthesis, inositol, betaine, serine and glycine metabolism. The statistical significance of the OPLS-DA modeling was also verified by an univariate analysis. HR-MAS NMR based metabolomics provides an useful insight into the metabolic reprogramming in endometrial cancer.
Collapse
|
7
|
Schuh SJ, Dias CF, Schuh GJ, Unis G. Pulmonary disease and the autonomic nervous system: a new pathophysiological mechanism for Lady Windermere syndrome. J Bras Pneumol 2021; 47:e20200529. [PMID: 33950090 PMCID: PMC8332843 DOI: 10.36416/1806-3756/e20200529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sandra Jungblut Schuh
- . Hospital Sanatório Partenon, Secretaria Estadual da Saúde do Estado do Rio Grande do Sul, Porto Alegre (RS) Brasil
| | - Claudia Fontoura Dias
- . Hospital Sanatório Partenon, Secretaria Estadual da Saúde do Estado do Rio Grande do Sul, Porto Alegre (RS) Brasil
| | - Gabriela Jungblut Schuh
- . Faculdade de Medicina, Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS) Brasil
| | - Gisela Unis
- . Hospital Sanatório Partenon, Secretaria Estadual da Saúde do Estado do Rio Grande do Sul, Porto Alegre (RS) Brasil
| |
Collapse
|
8
|
Xu B, Su H, Wang R, Wang Y, Zhang W. Metabolic networks of plasma and joint fluid base on differential correlation. PLoS One 2021; 16:e0247191. [PMID: 33617578 PMCID: PMC7899361 DOI: 10.1371/journal.pone.0247191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Whether osteoarthritis (OA) is a systemic metabolic disorder remains controversial. The aim of this study was to investigate the metabolic characteristics between plasma and knee joint fluid (JF) of patients with advanced OA using a differential correlation metabolic (DCM) networks approach. Plasma and JF were collected during the joint replacement surgery of patients with knee OA. The biological samples were pretreated with standard procedures for metabolite analysis. The metabolic profiling was conducted by means of liquid mass spectrometry coupled with a AbsoluteIDQ kit. A DCM network approach was adopted for analyzing the metabolomics data between the plasma and JF. The variation in the correlation of the pairwise metabolites was quantified across the plasma and JF samples, and networks analysis was used to characterize the difference in the correlations of the metabolites from the two sample types. Core metabolites that played an important role in the DCM networks were identified via topological analysis. One hundred advanced OA patients (50 men and 50 women) were included in this study, with an average age of 65.0 ± 7.6 years (65.6 ± 7.1 years for females and 64.4 ± 8.1 years for males) and a mean BMI of 32.6 ± 5.8 kg/m2 (33.4 ± 6.3 kg/m2 for females and 31.7 ± 5.3 kg/m2 for males). Age and BMI matched between the male and female groups. One hundred and forty-five nodes, 567 edges, and 131 nodes, 407 edges were found in the DCM networks (p < 0.05) of the female and male groups, respectively. Six metabolites in the female group and 5 metabolites in the male group were identified as key nodes in the network. There was a significant difference in the differential correlation metabolism networks of plasma and JF that may be related to local joint metabolism. Focusing on these key metabolites may help uncover the pathogenesis of knee OA. In addition, the differential metabolic correlation between plasma and JF mostly overlapped, indicating that these common correlations of pairwise metabolites may be a reflection of systemic characteristics of JF and that most significant correlation variations were just a result of "housekeeping” biological reactions.
Collapse
Affiliation(s)
- Bingyong Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Hangzhou Heze Pharmaceutical Technology CO.,LTD, Hangzhou, Zhejiang, China
| | - Hong Su
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Department of Pharmacy and Examination, Daqing Medical College, Daqing, Heilongjiang, China
| | - Ruya Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yixiao Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
9
|
Ding S, Chen M, Liao Y, Chen Q, Lin X, Chen S, Chai Y, Li C, Asakawa T. Serum Metabolic Profiles of Chinese Women With Perimenopausal Obesity Explored by the Untargeted Metabolomics Approach. Front Endocrinol (Lausanne) 2021; 12:637317. [PMID: 34630316 PMCID: PMC8498571 DOI: 10.3389/fendo.2021.637317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/22/2021] [Indexed: 11/30/2022] Open
Abstract
By far, no study has focused on observing the metabolomic profiles in perimenopause-related obesity. This study attempted to identify the metabolic characteristics of subjects with perimenopause obesity (PO). Thirty-nine perimenopausal Chinese women, 21 with PO and 18 without obesity (PN), were recruited in this study. A conventional ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UHPLC-QTOF/MS) followed by principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as untargeted metabolomics approaches to explore the serum metabolic profiles. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were used to identify the related metabolic pathways. A total of 46 differential metabolites, along with seven metabolic pathways relevant to PO were identified, which belonged to lipid, amino acids, carbohydrates, and organic acids. As for amino acids, we found a significant increase in l-arginine and d-ornithine in the positive ion (POS) mode and l-leucine, l-valine, l-tyrosine, and N-acetyl-l-tyrosine in the negative ion (NEG) mode and a significant decrease in l-proline in the POS mode of the PO group. We also found phosphatidylcholine (PC) (16:0/16:0), palmitic acid, and myristic acid, which are associated with the significant upregulation of lipid metabolism. Moreover, the serum indole lactic acid and indoleacetic acid were upregulated in the NEG mode. With respect to the metabolic pathways, the d-arginine and d-ornithine metabolisms and the arginine and proline metabolism pathways in POS mode were the most dominant PO-related pathways. The changes of metabolisms of lipid, amino acids, and indoleacetic acid provided a pathophysiological scenario for Chinese women with PO. We believe that the findings of this study are helpful for clinicians to take measures to prevent the women with PO from developing severe incurable obesity-related complications, such as cardiovascular disease and stroke.
Collapse
Affiliation(s)
- Shanshan Ding
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingyi Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Liao
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qiliang Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejuan Lin
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shujiao Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yujuan Chai
- School of Medical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Candong Li
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tetsuya Asakawa
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Tetsuya Asakawa,
| |
Collapse
|
10
|
Vignoli A, Tenori L, Giusti B, Valente S, Carrabba N, Balzi D, Barchielli A, Marchionni N, Gensini GF, Marcucci R, Gori AM, Luchinat C, Saccenti E. Differential Network Analysis Reveals Metabolic Determinants Associated with Mortality in Acute Myocardial Infarction Patients and Suggests Potential Mechanisms Underlying Different Clinical Scores Used To Predict Death. J Proteome Res 2020; 19:949-961. [PMID: 31899863 PMCID: PMC7011173 DOI: 10.1021/acs.jproteome.9b00779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
We
present here the differential analysis of metabolite–metabolite
association networks constructed from an array of 24 serum metabolites
identified and quantified via nuclear magnetic resonance spectroscopy
in a cohort of 825 patients of which 123 died within 2 years from
acute myocardial infarction (AMI). We investigated differences in
metabolite connectivity of patients who survived, at 2 years, the
AMI event, and we characterized metabolite–metabolite association
networks specific to high and low risks of death according to four
different risk parameters, namely, acute coronary syndrome classification,
Killip, Global Registry of Acute Coronary Events risk score, and metabolomics
NOESY RF risk score. We show significant differences in the connectivity
patterns of several low-molecular-weight molecules, implying variations
in the regulation of several metabolic pathways regarding branched-chain
amino acids, alanine, creatinine, mannose, ketone bodies, and energetic
metabolism. Our results demonstrate that the characterization of metabolite–metabolite
association networks is a promising and powerful tool to investigate
AMI patients according to their outcomes at a molecular level.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM) , University of Florence , Sesto Fiorentino 50019 , Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.) , Sesto Fiorentino 50019 , Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) , University of Florence , Sesto Fiorentino 50019 , Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.) , Sesto Fiorentino 50019 , Italy.,Department of Experimental and Clinical Medicine , University of Florence , Florence 50134 Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine , University of Florence , Florence 50134 Italy.,Atherothrombotic Diseases Center , Careggi Hospital , Florence 50134 , Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) , University of Florence , Florence 50134 , Italy
| | - Serafina Valente
- Department of Experimental and Clinical Medicine , University of Florence , Florence 50134 Italy.,Atherothrombotic Diseases Center , Careggi Hospital , Florence 50134 , Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) , University of Florence , Florence 50134 , Italy
| | - Nazario Carrabba
- Department of Cardiovascular and Thoracic Surgery , Careggi Hospital , Florence 50134 , Italy
| | - Daniela Balzi
- Unit of Epidemiology , ASL 10, Florence 50122 , Italy
| | | | - Niccolò Marchionni
- Department of Experimental and Clinical Medicine , University of Florence , Florence 50134 Italy
| | | | - Rossella Marcucci
- Department of Experimental and Clinical Medicine , University of Florence , Florence 50134 Italy.,Atherothrombotic Diseases Center , Careggi Hospital , Florence 50134 , Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) , University of Florence , Florence 50134 , Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine , University of Florence , Florence 50134 Italy.,Atherothrombotic Diseases Center , Careggi Hospital , Florence 50134 , Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) , University of Florence , Florence 50134 , Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) , University of Florence , Sesto Fiorentino 50019 , Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.) , Sesto Fiorentino 50019 , Italy.,Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Wageningen 6708 WE , the Netherlands
| |
Collapse
|