1
|
Lyu Z, Lyu X, Malyutin AG, Xia G, Carney D, Alves VM, Falk M, Arora N, Zou H, McGrath AP, Kang Y. Structural basis for the activation of proteinase-activated receptors PAR1 and PAR2. Nat Commun 2025; 16:3931. [PMID: 40287415 PMCID: PMC12033368 DOI: 10.1038/s41467-025-59138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Members of the proteinase-activated receptor (PAR) subfamily of G protein-coupled receptors (GPCRs) play critical roles in processes like hemostasis, thrombosis, development, wound healing, inflammation, and cancer progression. Comprising PAR1-PAR4, these receptors are specifically activated by protease cleavage at their extracellular amino terminus, revealing a 'tethered ligand' that self-activates the receptor. This triggers complex intracellular signaling via G proteins and beta-arrestins, linking external protease signals to cellular functions. To date, direct structural visualization of these ligand-receptor complexes has been limited. Here, we present structural snapshots of activated PAR1 and PAR2 bound to their endogenous tethered ligands, revealing a shallow and constricted orthosteric binding pocket. Comparisons with antagonist-bound structures show minimal conformational changes in the TM6 helix and larger movements of TM7 upon activation. These findings reveal a common activation mechanism for PAR1 and PAR2, highlighting critical residues involved in ligand recognition. Additionally, the structure of PAR2 bound to a pathway selective antagonist, GB88, demonstrates how potent orthosteric engagement can be achieved by a small molecule mimicking the endogenous tethered ligand's interactions.
Collapse
Affiliation(s)
- Zongyang Lyu
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Xiaoxuan Lyu
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Andrey G Malyutin
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Guliang Xia
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Daniel Carney
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Vinicius M Alves
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Matthew Falk
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Nidhi Arora
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Hua Zou
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Aaron P McGrath
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA.
| | - Yanyong Kang
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA.
| |
Collapse
|
2
|
Liu B, Lee G, Wu J, Deming J, Kuei C, Harrington A, Wang L, Towne J, Lovenberg T, Liu C, Sun S. Retraction: The PAR2 signal peptide prevents premature receptor cleavage and activation. PLoS One 2024; 19:e0305363. [PMID: 38843168 PMCID: PMC11156297 DOI: 10.1371/journal.pone.0305363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
|
3
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
4
|
Kalogera S, He Y, Bay-Jensen AC, Gantzel T, Sun S, Manon-Jensen T, Karsdal MA, Thudium CS. The activation fragment of PAR2 is elevated in serum from patients with rheumatoid arthritis and reduced in response to anti-IL6R treatment. Sci Rep 2021; 11:24285. [PMID: 34930943 PMCID: PMC8688421 DOI: 10.1038/s41598-021-03346-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
AbstractOsteoarthritis (OA) and rheumatoid arthritis (RA) are serious and painful diseases. Protease-activated receptor 2 (PAR2) is involved in the pathology of both OA and RA including roles in synovial hyperplasia, cartilage destruction, osteophyogenesis and pain. PAR2 is activated via cleavage of its N-terminus by serine proteases. In this study a competitive ELISA assay was developed targeting the 36-amino acid peptide that is cleaved and released after PAR2 activation (PRO-PAR2). Technical assay parameters including antibody specificity, intra- and inter-assay variation (CV%), linearity, accuracy, analyte stability and interference were evaluated. PRO-PAR2 release was confirmed after in vitro cleavage of PAR2 recombinant protein and treatment of human synovial explants with matriptase. Serum levels of 22 healthy individuals, 23 OA patients and 15 RA patients as well as a subset of RA patients treated with tocilizumab were evaluated. The PRO-PAR2 antibody was specific for the neo-epitope and intra-inter assay CV% were 6.4% and 5.8% respectively. In vitro cleavage and matriptase treated explants showed increased PRO-PAR2 levels compared to controls. In serum, PRO-PAR2 levels were increased in RA patients and decreased in RA patients treated with tocilizumab. In conclusion, PRO-PAR2 may be a potential biomarker for monitoring RA disease and pharmacodynamics of treatment.
Collapse
|