1
|
Fajkus P, Fajkus J. Telomerase RNA evolution: a journey from plant telomeres to broader eukaryotic diversity. Biochem J 2025; 482:BCJ20240501. [PMID: 39889303 DOI: 10.1042/bcj20240501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/02/2025]
Abstract
Telomeres, essential for maintaining genomic stability, are typically preserved through the action of telomerase, a ribonucleoprotein complex that synthesizes telomeric DNA. One of its two core components, telomerase RNA (TR), serves as the template for this synthesis, and its evolution across different species is both complex and diverse. This review discusses recent advancements in understanding TR evolution, with a focus on plants (Viridiplantae). Utilizing novel bioinformatic tools and accumulating genomic and transcriptomic data, combined with corresponding experimental validation, researchers have begun to unravel the intricate pathways of TR evolution and telomere maintenance mechanisms. Contrary to previous beliefs, a monophyletic origin of TR has been demonstrated first in land plants and subsequently across the broader phylogenetic megagroup Diaphoretickes. Conversely, the discovery of plant-type TRs in insects challenges assumptions about the monophyletic origin of TRs in animals, suggesting evolutionary innovations coinciding with arthropod divergence. The review also highlights key challenges in TR identification and provides examples of how these have been addressed. Overall, this work underscores the importance of expanding beyond model organisms to comprehend the full complexity of telomerase evolution, with potential applications in agriculture and biotechnology.
Collapse
Affiliation(s)
- Petr Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. THE PLANT CELL 2023; 35:1762-1786. [PMID: 36738093 PMCID: PMC10226578 DOI: 10.1093/plcell/koad027] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Li’ang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
3
|
Palos K, Nelson Dittrich AC, Yu L, Brock JR, Railey CE, Wu HYL, Sokolowska E, Skirycz A, Hsu PY, Gregory BD, Lyons E, Beilstein MA, Nelson ADL. Identification and functional annotation of long intergenic non-coding RNAs in Brassicaceae. THE PLANT CELL 2022; 34:3233-3260. [PMID: 35666179 PMCID: PMC9421480 DOI: 10.1093/plcell/koac166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/05/2022] [Indexed: 06/01/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are a large yet enigmatic class of eukaryotic transcripts that can have critical biological functions. The wealth of RNA-sequencing (RNA-seq) data available for plants provides the opportunity to implement a harmonized identification and annotation effort for lincRNAs that enables cross-species functional and genomic comparisons as well as prioritization of functional candidates. In this study, we processed >24 Tera base pairs of RNA-seq data from >16,000 experiments to identify ∼130,000 lincRNAs in four Brassicaceae: Arabidopsis thaliana, Camelina sativa, Brassica rapa, and Eutrema salsugineum. We used nanopore RNA-seq, transcriptome-wide structural information, peptide data, and epigenomic data to characterize these lincRNAs and identify conserved motifs. We then used comparative genomic and transcriptomic approaches to highlight lincRNAs in our data set with sequence or transcriptional conservation. Finally, we used guilt-by-association analyses to assign putative functions to lincRNAs within our data set. We tested this approach on a subset of lincRNAs associated with germination and seed development, observing germination defects for Arabidopsis lines harboring T-DNA insertions at these loci. LincRNAs with Brassicaceae-conserved putative miRNA binding motifs, small open reading frames, or abiotic-stress modulated expression are a few of the annotations that will guide functional analyses into this cryptic portion of the transcriptome.
Collapse
Affiliation(s)
- Kyle Palos
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | | | - Li’ang Yu
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Jordan R Brock
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Caylyn E Railey
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Lyons
- The School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Mark A Beilstein
- The School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
4
|
Shakirov EV, Chen JJL, Shippen DE. Plant telomere biology: The green solution to the end-replication problem. THE PLANT CELL 2022; 34:2492-2504. [PMID: 35511166 PMCID: PMC9252485 DOI: 10.1093/plcell/koac122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 05/04/2023]
Abstract
Telomere maintenance is a fundamental cellular process conserved across all eukaryotic lineages. Although plants and animals diverged over 1.5 billion years ago, lessons learned from plants continue to push the boundaries of science, revealing detailed molecular mechanisms in telomere biology with broad implications for human health, aging biology, and stress responses. Recent studies of plant telomeres have unveiled unexpected divergence in telomere sequence and architecture, and the proteins that engage telomeric DNA and telomerase. The discovery of telomerase RNA components in the plant kingdom and some algae groups revealed new insight into the divergent evolution and the universal core of telomerase across major eukaryotic kingdoms. In addition, resources cataloging the abundant natural variation in Arabidopsis thaliana, maize (Zea mays), and other plants are providing unparalleled opportunities to understand the genetic networks that govern telomere length polymorphism and, as a result, are uncovering unanticipated crosstalk between telomeres, environmental factors, organismal fitness, and plant physiology. Here we recap current advances in plant telomere biology and put this field in perspective relative to telomere and telomerase research in other eukaryotic lineages.
Collapse
Affiliation(s)
- Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia 25701, USA
| | - Julian J -L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
5
|
Fajkus P, Kilar A, Nelson ADL, Holá M, Peška V, Goffová I, Fojtová M, Zachová D, Fulnečková J, Fajkus J. Evolution of plant telomerase RNAs: farther to the past, deeper to the roots. Nucleic Acids Res 2021; 49:7680-7694. [PMID: 34181710 PMCID: PMC8287931 DOI: 10.1093/nar/gkab545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.
Collapse
Affiliation(s)
- Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | | | - Marcela Holá
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague CZ-16000, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Ivana Goffová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Fulnečková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| |
Collapse
|
6
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Bose S, Suescún AV, Song J, Castillo-González C, Aklilu BB, Branham E, Lynch R, Shippen DE. tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana. PLANT CELL REPORTS 2020; 39:1669-1685. [PMID: 32959123 PMCID: PMC7655638 DOI: 10.1007/s00299-020-02594-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE: tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage. AtTER2 was initially shown to partially overlap with the 5' UTR of the tRNA ADENOSINE DEAMINASE 3 (TAD3) gene. However, updated genome annotation showed that AtTER2 was completely embedded in TAD3, raising the possibility that phenotypes ascribed to AtTER2 could be derived from TAD3. Here we show through strand-specific RNA-Seq, strand-specific qRT-PCR and bioinformatic analyses that AtTER2 does not encode a stable lncRNA. Further examination of the original tad3 (ter2-1/tad3-1) mutant revealed expression of an antisense transcript driven by a cryptic promoter in the T-DNA. Hence, a new hypomorphic allele of TAD3 (tad3-2) was examined. tad3-2 mutants showed hypersensitivity to DNA damage, but no deregulation of telomerase, suggesting that the telomerase phenotype of tad3-1 mutants reflects an off-target effect. Unexpectedly, however, tad3-2 plants displayed progressive loss of telomeric DNA over successive generations that was not accompanied by alteration of terminal architecture or end protection. The phenotype was exacerbated in plants lacking the telomerase processivity factor POT1a, indicating that TAD3 promotes telomere maintenance through a non-canonical, telomerase-independent pathway. The transcriptome of tad3-2 mutants revealed significant dysregulation of genes involved in auxin signaling and glucosinolate biosynthesis, pathways that intersect the stress response, cell cycle regulation and DNA metabolism. These findings indicate that the TAD3 locus indirectly contributes to telomere length homeostasis by altering the metabolic profile in Arabidopsis.
Collapse
Affiliation(s)
- Sreyashree Bose
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ana Victoria Suescún
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Facultad de Ciencias, Instituto de Ciencias Ambientales Y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | - Behailu Birhanu Aklilu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- KWS Gateway Research Center, LLC, 1005 N Warson Rd, BRDG Park, St. Louis, MO, 63132, USA
| | - Erica Branham
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ryan Lynch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Biochemistry and Biophysics, 300 Olsen Blvd, Room 413, College Station, TX, 77843-2128, USA.
| |
Collapse
|
8
|
Schrumpfová PP, Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules 2020; 10:biom10101425. [PMID: 33050064 PMCID: PMC7658794 DOI: 10.3390/biom10101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase—a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase—its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component—were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Correspondence:
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
9
|
Peska V, Mátl M, Mandáková T, Vitales D, Fajkus P, Fajkus J, Garcia S. Human-like telomeres in Zostera marina reveal a mode of transition from the plant to the human telomeric sequences. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5786-5793. [PMID: 32589715 DOI: 10.1093/jxb/eraa293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/16/2020] [Indexed: 05/26/2023]
Abstract
A previous study describing the genome of Zostera marina, the most widespread seagrass in the Northern hemisphere, revealed some genomic signatures of adaptation to the aquatic environment such as the loss of stomatal genes, while other functions such as an algal-like cell wall composition were acquired. Beyond these, the genome structure and organization were comparable with those of the majority of plant genomes sequenced, except for one striking feature that went unnoticed at that time: the presence of human-like instead of the expected plant-type telomeric sequences. By using different experimental approaches including fluorescence in situ hybridization (FISH), genome skimming by next-generation sequencing (NGS), and analysis of non-coding transcriptome, we have confirmed its telomeric location in the chromosomes of Z. marina. We have also identified its telomerase RNA (TR) subunit, confirming the presence of the human-type telomeric sequence in the template region. Remarkably, this region was found to be very variable even in clades with a highly conserved telomeric sequence across their species. Based on this observation, we propose that alternative annealing preferences in the template borders can explain the transition between the plant and human telomeric sequences. The further identification of paralogues of TR in several plant genomes led us to the hypothesis that plants may retain an increased ability to change their telomeric sequence. We discuss the implications of this occurrence in the evolution of telomeres while introducing a mechanistic model for the transition from the plant to the human telomeric sequences.
Collapse
Affiliation(s)
- Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Martin Mátl
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | - Terezie Mandáková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Plant Molecular Genetics, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, Barcelona, Catalonia, Spain
| | - Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, Barcelona, Catalonia, Spain
| |
Collapse
|