1
|
Oladipo EK, Adeyemo SF, Oshoneye AI, Akintola HB, Elegbede BI, Ayoomoba TU, Atilade DA, Adegboye OO, Ejikeme AE, Balogun CO, Aderibigbe KA, Popoola PO, Alabi VA, Irewolede BA, Ano-Edward GH, Ayeleso AO, Onyeaka H. Harnessing computational immunology to design targeted subunit vaccines for infectious bursal disease in poultry. FRONTIERS IN BIOINFORMATICS 2025; 5:1562997. [PMID: 40255694 PMCID: PMC12006097 DOI: 10.3389/fbinf.2025.1562997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Infectious bursal disease (IBD), caused by the infectious bursal disease Q8 virus (IBDV), is a highly contagious disease in young chickens, leading to immunosuppression with great economic importance. IBDV, a non-enveloped virus with a bipartite dsRNA genome, infects the bursa of Fabricius, causing severe gastrointestinal disease. Effective vaccines are urgently needed due to the limitations of current oral vaccines, including gastrointestinal degradation and low immunogenicity. This study designs and evaluates a multiepitope subunit vaccine using immunoinformatics. Methods Sequences of the IBDV structural proteins VP2 and VP3 were obtained from the National Centre for Biotechnology Information) NCBI. These are structural proteins VP2 and VP3 were subjected to the Vaxijen 2.0 webserver to predict the antigenicity, ToxiPred to predict the toxicity and further analyzed to identify immunogenic epitopes of Chicken Leukocyte Antigens (CLAs) using the NetMHCpan 4.1 webserver. Results The final vaccine construct includes 2 HTL, 21 CTL, and 7 LBL epitopes, with gallinacin-3 precursor as an adjuvant. The construct is antigenic (0.5605), non-allergenic, and non-toxic, consisting of 494 amino acids with a molecular weight of 54.88 kDa and a positive charge (pI of 9.23). It is stable, hydrophilic, and soluble. Population coverage analysis revealed a global immune coverage of 89.83%, with the highest in Europe (99.86%) and the lowest in Central America (25.01%). Molecular docking revealed strong interactions with TLR-2_1, TLR-4, and TLR-7, with TLR-7 exhibiting the highest binding affinity (-366.15 kcal/mol). Immune simulations indicated a robust immune response, with high initial IgM levels, sustained IgG, memory cell formation, and activation of T helper (Th) cells 1 and 2, Natural Killer (NK) cells, and dendritic cells, suggesting potential long-lasting immunity against IBDV. Discussion This study presents a promising multi-epitope subunit vaccine candidate capable of effective immunization against IBDV with broad population coverage. However, further in vivo experimental validation is required to confirm its efficacy and safety.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun, Nigeria
- Department of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Stephen Feranmi Adeyemo
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Ayomiposi Isaiah Oshoneye
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Hannah Blessing Akintola
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Bolatito Islam Elegbede
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Tobiloba Uren Ayoomoba
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Dorcas Ayomide Atilade
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Omolara Omoboye Adegboye
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Abuoma Elizabeth Ejikeme
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
- Department of Biomedical Laboratory Science, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Chris Olamide Balogun
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Kehinde Abolade Aderibigbe
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Possible Okikiola Popoola
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Victoria Ajike Alabi
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | - Boluwatife Ayobami Irewolede
- Division of Vaccine and Pharmacotherapies Design and Development, Helix Biogen Institute, Ogbomoso, Oyo, Nigeria
| | | | - Ademola Olabode Ayeleso
- Department of Biochemistry, Bowen University, Iwo, Osun, Nigeria
- Department of Life and Consumer Sciences, University of South Africa, Florida Park, Roodeport, South Africa
| | - Helen Onyeaka
- Department of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Antonova AA, Lebedev AV, Ozhmegova EN, Shlykova AV, Lapavok IA, Kuznetsova AI. Variability of non-structural proteins of HIV-1 sub-subtype A6 (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1, sub-subtype A6) variants circulating in different regions of the Russian Federation. Vopr Virusol 2024; 69:470-480. [PMID: 39527769 DOI: 10.36233/0507-4088-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION HIV-1 non-structural proteins are promising targets for vaccine development and for creating approaches to personalized medicine. HIV-1 sub-subtype A6 has become the dominating strain in Russia. However, the geographic, economic and demographic characteristics of the country can contribute to the formation of differences between A6 variants circulating in different regions. The aim of the study is a comparative analysis of the consensus sequences of non-structural proteins in A6 variants circulating in the Amur Region, in Arkhangelsk, Irkutsk and Murmansk. MATERIALS AND METHODS 48 whole blood samples obtained from HIV-infected patients without experience of therapy observed at the AIDS Centers in Arkhangelsk, Irkutsk, Murmansk and Amur Region were analyzed. HIV-1 whole-genome nucleotide sequences were obtained and were subtyped. Consensus sequences of sub-subtype A6 variants non-structural proteins for each analyzed region were formed. Furthermore, reference sequences of sub-subtype A6 non-structural proteins were formed based on whole-genome sequences retrieved from the international Los Alamos database. Comparison of consensus sequences and references was performed using the MEGA v.10.2.2 and the PSIPRED programs. RESULTS Vif, Vpr and Nef reference sequences have been obtained for HIV-1 sub-subtype A6. There was not difference in consensus sequences of Vpr in different regions. Characteristic features were found for consensus sequences of Tat, Rev, Vpu, Vif and Nef proteins in different regions. CONCLUSION A limitation of the study is a small sample size. Overall, the results demonstrate the existing diversity of non-structural proteins in sub-subtype A6 variants in different regions and indicate the relevance of studying the polymorphism of non-structural proteins of virus variants in different regions.
Collapse
Affiliation(s)
- A A Antonova
- D.I. Ivanovsky Institute of Virology of National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - A V Lebedev
- D.I. Ivanovsky Institute of Virology of National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - E N Ozhmegova
- D.I. Ivanovsky Institute of Virology of National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | | | | | - A I Kuznetsova
- D.I. Ivanovsky Institute of Virology of National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| |
Collapse
|
3
|
Helmy NM, Parang K. The Role of Peptides in Combatting HIV Infection: Applications and Insights. Molecules 2024; 29:4951. [PMID: 39459319 PMCID: PMC11510642 DOI: 10.3390/molecules29204951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Peptide-based inhibitors represent a promising approach for the treatment of HIV-1, offering a range of potential advantages, including specificity, low toxicity, and the ability to target various stages of the viral lifecycle. This review outlines the current state of research on peptide-based anti-HIV therapies, highlighting key advancements and identifying future research directions. Over the past few years, there has been significant progress in developing synthetic peptide-based drugs that target various stages of the viral life cycle, including entry and replication. These approaches aim to create effective anti-HIV therapies. Additionally, peptides have proven valuable in the development of anti-HIV vaccines. In the quest for effective HIV vaccines, discovering potent antigens and designing suitable vaccine strategies are crucial for overcoming challenges such as low immunogenicity, safety concerns, and increased viral load. Innovative strategies for vaccine development through peptide research are, therefore, a key focus area for achieving effective HIV prevention. This review aims to explore the strategies for designing peptides with anti-HIV activity and to highlight their role in advancing both therapeutic and preventive measures against HIV.
Collapse
Affiliation(s)
- Naiera M. Helmy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza 3751134, Egypt;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| |
Collapse
|
4
|
Hasani SM, Behdani M, Amirkhani Z, Rahimmanesh I, Esmaeilifallah M, Zaker E, Nikpour P, Fadaie M, Ghafouri E, Naderi S, Khanahmad H. Novel SARS-COV2 poly epitope phage-based candidate vaccine and its immunogenicity. Res Pharm Sci 2024; 19:573-590. [PMID: 39691297 PMCID: PMC11648347 DOI: 10.4103/rps.rps_82_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose The global emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted widespread concern. Bacteriophages have recently gained attention as a cost-effective and stable alternative for vaccine development due to their adjuvant properties. This study aimed to design and validate a poly epitope composed of viral proteins. Experimental approach SARS-CoV-2 proteins (spike, nucleocapsid, membrane, envelope, papain-like protease, and RNA-dependent RNA polymerase) were selected for analysis. Immunoinformatic methods were employed to predict B and T cell epitopes, assessing their antigenicity, allergenicity, and toxicity. Epitopes meeting criteria for high antigenicity, non-allergenicity, and non-toxicity were linked to form poly epitopes. These sequences were synthesized and cloned into pHEN4 plasmids to generate Poly1 and Poly2 phagemid vectors. Recombinant Poly1 and Poly2 phages were produced by transforming M13ΔIII plasmids and phagemid vectors into E. coli TG1. Female Balb/c mice were immunized with a cocktail of Poly1 and Poly2 phages, and their serum was collected for ELISA testing. Interferon-gamma (IFN-γ) testing was performed on spleen-derived lymphocytes to evaluate immune system activation. Findings/Results Recombinant Poly1 and Poly2 phages were produced, and their titer was determined as 1013 PFU/mL. Efficient humoral immune responses and cellular immunity activation in mice were achieved following phage administration. Conclusion and implication Poly epitopes displayed on phages exhibit adjuvant properties, enhancing humoral and cellular immunity in mice. This suggests that phages could serve as adjuvants to bolster immunity against SARS-Cov-2. Recombinant phages could be applied as effective candidates for injectable and oral vaccine development strategies.
Collapse
Affiliation(s)
- Sharareh Mohammad Hasani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Behdani
- Department of Biotechnology, Biotechnology Research Center, Venom and Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Zohreh Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Esmaeilifallah
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Zaker
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Science, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Science, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Habib A, Liang Y, Xu X, Zhu N, Xie J. Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection. Int J Mol Sci 2024; 25:2432. [PMID: 38397105 PMCID: PMC10889372 DOI: 10.3390/ijms25042432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Acquired Immunodeficiency Syndrome is caused by the Human Immunodeficiency Virus (HIV), and a significant number of fatalities occur annually. There is a dire need to develop an effective vaccine against HIV-1. Understanding the structural proteins of viruses helps in designing a vaccine based on immunogenic peptides. In the current experiment, we identified gp120 epitopes using bioinformatic epitope prediction tools, molecular docking, and MD simulations. The Gb-1 peptide was considered an adjuvant. Consecutive sequences of GTG, GSG, GGTGG, and GGGGS linkers were used to bind the B cell, Cytotoxic T Lymphocytes (CTL), and Helper T Lymphocytes (HTL) epitopes. The final vaccine construct consisted of 315 amino acids and is expected to be a recombinant protein of approximately 35.49 kDa. Based on docking experiments, molecular dynamics simulations, and tertiary structure validation, the analysis of the modeled protein indicates that it possesses a stable structure and can interact with Toll-like receptors. The analysis demonstrates that the proposed vaccine can provoke an immunological response by activating T and B cells, as well as stimulating the release of IgA and IgG antibodies. This vaccine shows potential for HIV-1 prophylaxis. The in-silico design suggests that multiple-epitope constructs can be used as potentially effective immunogens for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Yulai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Xinyi Xu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
- Institute of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| |
Collapse
|
6
|
Milani A, Baesi K, Agi E, Marouf G, Ahmadi M, Bolhassani A. HIV-1 Accessory Proteins: Which one is Potentially Effective in Diagnosis and Vaccine Development? Protein Pept Lett 2021; 28:687-698. [PMID: 33390106 DOI: 10.2174/0929866528999201231213610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The combination antiretroviral therapy (cART) could increase the number of circulating naive CD4 T lymphocytes, but was not able to eradicate human immunodeficiency virus-1 (HIV-1) infection. OBJECTIVE Thus, induction of strong immune responses is important for control of HIV-1 infection. Furthermore, a simple and perfect serological method is required to detect virus in untreated-, treated- and drug resistant- HIV-1 infected individuals. METHODS This study was conducted to assess and compare immunogenic properties of Nef, Vif, Vpr and Vpu accessory proteins as an antigen candidate in mice and their diagnostic importance in human as a biomarker. RESULTS Our data showed that in mice, all heterologous prime/ boost regimens were more potent than homologous prime/ boost regimens in eliciting Th1 response and Granzyme B secretion as CTL activity. Moreover, the Nef, Vpu and Vif proteins could significantly increase Th1 immune response. In contrast, the Vpr protein could considerably induce Th2 immune response. On the other hand, among four accessory proteins, HIV-1 Vpu could significantly detect treated group from untreated group as a possible biomarker in human. CONCLUSION Generally, among accessory proteins, Nef, Vpu and Vif antigens were potentially more suitable vaccine antigen candidates than Vpr antigen. Human antibodies against all these proteins were higher in HIV-1 different groups than healthy group. Among them, Vpu was known as a potent antigen in diagnosis of treated from untreated individuals. The potency of accessory proteins as an antigen candidate in an animal model and a human cohort study are underway.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Ghazal Marouf
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ahmadi
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Khojasteh NF, Fekri M, Shabani SH, Milani A, Baesi K, Bolhassani A. Evaluation of HIV-1 Regulatory and Structural Proteins as Antigen Candidate in Mice and Humans. Curr HIV Res 2021; 19:225-237. [PMID: 33243125 DOI: 10.2174/1570162x18999201125212131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The diagnosis of HIV infection is important among different groups. Moreover, combination antiretroviral therapy is used to treat HIV-1, but it cannot eradicate the infection. Thus, the development of therapeutic vaccines, along with antiretroviral therapy, is recommended. This study evaluates the values of four HIV proteins as antigen candidates in therapeutic vaccine design as well as a possible diagnostic marker for HIV infection in humans. METHODS In this study, the HIV-1 Tat and Rev regulatory proteins and structural Gp120 and p24 proteins were generated in E. coli expression system. Their immunogenicity was evaluated in BALB/ c mice using homologous and heterologous prime/boost strategies. Moreover, the detection of anti- HIV IgG antibodies against these recombinant proteins was assessed in untreated (Naïve/ HIV-infected), treated, and drug-resistant patients compared to the healthy (control) group as a possible diagnostic marker for HIV infection. RESULTS In humans, our results showed that among HIV-1 proteins, anti-Gp120 antibody was not detected in treated individuals compared to the healthy (control) group. The levels of anti-Gp120 antibody were significantly different between the treated group and Naïve as well as drug-resistant subjects. Moreover, the level of anti-p24 antibody was significantly lower in the treated group than the Naive group. In mice, the results of immunization indicated that the Rev antigen could significantly induce IgG2a, IgG2b, and IFN-γ secretion aimed at Th1 response as well as Granzyme B generation as CTL activity in comparison with other antigens. Furthermore, the heterologous DNA prime/ protein boost regimen was more potent than the homologous regimen for stimulation of cellular immunity. CONCLUSION Briefly, the levels of both anti-Gp120 and anti-p24 antibodies can be considered for the diagnosis of the HIV-infected individuals in different groups compared to the healthy group. Moreover, among four recombinant proteins, Rev elicited Th1 cellular immunity and CTL activity in mice as an antigen candidate in therapeutic vaccine development.
Collapse
Affiliation(s)
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Holl NJ, Lee HJ, Huang YW. Evolutionary Timeline of Genetic Delivery and Gene Therapy. Curr Gene Ther 2021; 21:89-111. [PMID: 33292120 DOI: 10.2174/1566523220666201208092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/22/2022]
Abstract
There are more than 3,500 genes that are being linked to hereditary diseases or correlated with an elevated risk of certain illnesses. As an alternative to conventional treatments with small molecule drugs, gene therapy has arisen as an effective treatment with the potential to not just alleviate disease conditions but also cure them completely. In order for these treatment regimens to work, genes or editing tools intended to correct diseased genetic material must be efficiently delivered to target sites. There have been many techniques developed to achieve such a goal. In this article, we systematically review a variety of gene delivery and therapy methods that include physical methods, chemical and biochemical methods, viral methods, and genome editing. We discuss their historical discovery, mechanisms, advantages, limitations, safety, and perspectives.
Collapse
Affiliation(s)
- Natalie J Holl
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, College of Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
9
|
Shabani SH, Kardani K, Milani A, Bolhassani A. In Silico and in Vivo Analysis of HIV-1 Rev Regulatory Protein for Evaluation of a Multiepitope-based Vaccine Candidate. Immunol Invest 2021; 51:1-28. [PMID: 33416004 DOI: 10.1080/08820139.2020.1867163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In silico-designed multiepitope conserved regions of human immunodeficiency virus 1 (HIV-1) proteins would be a beneficial strategy for antigen design which induces effective anti-HIV-1 T-cell responses. The conserved multiple HLA-DR-binding epitopes of Rev protein were identified using IEDB MHC-I prediction tools and SYFPEITHI webserver to screen potential T-cell epitopes. We analyzed toxicity, allergenicity, immunogenicity, hemolytic activity, cross-reactivity, cell-penetrating peptide (CPP) potency, and molecular docking of the candidate epitopes using several immune-informatics tools. Afterward, we designed a novel multiepitope construct based on non-toxic and non-allergenic Rev, Nef, Gp160 and P24-derived cytotoxic T cell (CTL) and T-helper cell (HTL) epitopes. Next, the designed construct (Nef-Rev-Gp160-P24) was subjected to three B-cell epitope prediction webservers, ProtParam and Protein-Sol to obtain the physicochemical features. Then, the recombinant multiepitope DNA and polypeptide constructs were complexed with different CPPs for nanoparticle formation and pass them via the cell membranes. Finally, the immunogenicity of multiepitope constructs in a variety of modalities was evaluated in mice. The results demonstrated that groups immunized with heterologous DNA+ MPG or HR9 CPP prime/rNef-Rev-Gp160-P24 polypeptide + LDP-NLS CPP boost regimens could significantly produce higher levels of IFN-γ and Granzyme B, and lower amounts of IL-10 than other groups. Moreover, higher levels of IgG2a and IgG2b were observed in all heterologous prime-boost regimens than homologous DNA or polypeptide regimens. Altogether, the present findings indicated that the Nef-Rev-Gp160-P24 polypeptide meets the criteria to be potentially useful as a multiepitope-based vaccine candidate against HIV-1 infection.
Collapse
Affiliation(s)
- Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Cppsite 2.0: An Available Database of Experimentally Validated Cell-Penetrating Peptides Predicting their Secondary and Tertiary Structures. J Mol Biol 2020; 433:166703. [PMID: 33186582 DOI: 10.1016/j.jmb.2020.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
One of the biggest barriers in drug and vaccine development is to find an effective delivery system. Cell-penetrating peptides (CPPs) play a crucial role for delivery of biological cargoes and pass them through the membranes. Several databases have been developed for therapeutic peptides as potential drug candidates and delivery vehicles. A rapid growth has occurred in many patents and research articles on CPPs as therapeutic peptides. To save time and cost in laboratories, prediction and design of CPPs before in vitro/in vivo experiments using computational methods and online web servers are rational. Various online web servers which provide prediction of CPPs including CellPPD, CPPpred, CPPred-RF and MLCPP, and also different curated databases that present validated information of CPPs such as CPPsite 2.0 have been developed up to now. Two methods including CellPPD and CPPpred were applied to predict and design potent CPPs. CPPsite 2.0 is a user-friendly updated database that provides various information about CPPs and contains 1855 entries. This database provides comprehensive information on experimentally tested CPPs and prediction of their secondary and tertiary structures to realize their structure-function relationship. Furthermore, each entry presents information of a CPP including chirality, origin, nature of peptide, sub-cellular localization, uptake mechanism and efficiency, amino acid composition, hydrophobicity, and physicochemical properties. One of main goals of CPPsite 2.0 database is to provide the latest datasets of CPPs for analysis and development of CPP prediction methods. CPPsite 2.0 is freely available at https://webs.iiitd.edu.in/raghava/cppsite.
Collapse
|
11
|
Kardani K, Bolhassani A, Agi E, Hashemi A. B1 protein: a novel cell penetrating protein for in vitro and in vivo delivery of HIV-1 multi-epitope DNA constructs. Biotechnol Lett 2020; 42:1847-1863. [PMID: 32449070 PMCID: PMC7246087 DOI: 10.1007/s10529-020-02918-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/17/2020] [Indexed: 12/02/2022]
Abstract
OBJECTIVES Enhancement of the potential ability of biomacromolecules to cross cell membranes is a critical step for development of effective therapeutic vaccine especially DNA vaccine against human immunodeficiency virus-1 (HIV-1) infection. The supercharged proteins were known as powerful weapons for delivery of different types of cargoes such as DNA and protein. Hence, we applied B1 protein with + 43 net charges obtained from a single frameshift in the gene encoding enhanced green fluorescent protein (eGFP) for delivery of two multi-epitope DNA constructs (nef-vpu-gp160-p24 and nef-vif-gp160-p24) in vitro and in vivo for the first time. For this purpose, B1 protein was generated in bacterial expression system under native conditions, and used to interact with both DNA constructs. RESULTS Our data indicated that B1 protein (~ 27 kDa) was able to form a stable nanoparticle (~ 80-110 nm) with both DNA constructs at nitrogen: phosphate (N: P) ratio of 1:1. Moreover, the transfection efficiency of B1 protein for DNA delivery into HEK-293T cell line indicated that the cellular uptake of nef-vif-gp160-p24 DNA/ B1 and nef-vpu-gp160-p24 DNA/ B1 nanoparticles was about 32-35% with lower intensity as compared to TurboFect commercial reagent. On the other hand, immunization of BALB/c mice with different modalities demonstrated that B1 protein could enhance the levels of antibody, IFN-gamma and Granzyme B eliciting potent and strong Th1-directed cellular immunity. CONCLUSION Generally, our findings showed the potency of B1 protein as a promising gene delivery system to improve an effective therapeutic vaccine against HIV-1 infection.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
13
|
Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Rev Vaccines 2020; 19:699-726. [PMID: 32648830 DOI: 10.1080/14760584.2020.1794832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Due to overcome the hardness of the vaccine design, computational vaccinology is emerging widely. Prediction of T cell and B cell epitopes, antigen processing analysis, antigenicity analysis, population coverage, conservancy analysis, allergenicity assessment, toxicity prediction, and protein-peptide docking are important steps in the process of designing and developing potent vaccines against various viruses and cancers. In order to perform all of the analyses, several bioinformatics tools and online web servers have been developed. Scientists must take the decision to apply more suitable and precise servers for each part based on their accuracy. AREAS COVERED In this review, a wide-range list of different bioinformatics tools and online web servers has been provided. Moreover, some studies were proposed to show the importance of various bioinformatics tools for predicting and developing efficient vaccines against different pathogens including viruses, bacteria, parasites, and fungi as well as cancer. EXPERT OPINION Immunoinformatics is the best way to find potential vaccine candidates against different pathogens. Thus, the selection of the most accurate tools is necessary to predict and develop potent preventive and therapeutic vaccines. To further evaluation of the computational and in silico vaccine design, in vitro/in vivo analyses are required to develop vaccine candidates.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center , Tehran, Iran
| |
Collapse
|
14
|
Milani A, Baesi K, Agi E, Bolhassani A. Detection of Anti-IgGs against Heat Shock Proteins 27 and 20, HP91 Peptide, and HIV-1 Polypeptides in HIV-Positive and Negative Patients. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2020. [DOI: 10.29252/jommid.8.3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
15
|
Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Mol Immunol 2020; 119:106-122. [DOI: 10.1016/j.molimm.2020.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
|