1
|
Hernández-García JA, Bernal JS, Antony-Babu S, Villa-Tanaca L, Hernández-Rodríguez C, De-la-Vega-Camarillo E. Teosinte-derived SynCom and precision biofertilization modulate the maize microbiome, enhancing growth, yield, and soil functionality in a Mexican field. Front Microbiol 2025; 16:1534327. [PMID: 40270813 PMCID: PMC12015678 DOI: 10.3389/fmicb.2025.1534327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Modern agriculture faces the challenge of optimizing fertilization practices while maintaining soil resilience and microbial diversity, both critical for sustainable crop production. We evaluated the effects of multiple fertilization strategies on soil microbial communities and plant performance, comparing conventional methods (urea-based and phosphorus fertilizers applied manually or via drone-assisted precision delivery) with biofertilization using a synthetic microbial consortium (SynCom) derived from teosinte-associated microbes. This SynCom consisted of seven bacterial strains: Serratia nematodiphila EDR2, Klebsiella variicola EChLG19, Bacillus thuringiensis EML22, Pantoea agglomerans EMH25, Bacillus thuringiensis EBG39, Serratia marcescens EPLG52, and Bacillus tropicus EPP72. High-throughput sequencing revealed significant shifts in bacterial and fungal communities across treatments. Untreated soils showed limited diversity, dominated by Enterobacteriaceae (>70%). Conventional fertilization gradually reduced Enterobacteriaceae while increasing Pseudomonas and Lysinibacillus populations. Drone-assisted conventional fertilization notably enhanced Acinetobacter and Rhizobiales growth. Biofertilization treatments produced the most pronounced shifts, reducing Enterobacteriaceae below 50% while significantly increasing beneficial taxa like Bacillus, Pantoea, and Serratia. Network analysis demonstrated that microbial interaction complexity increased across treatments, with Bacillus emerging as a keystone species. Drone-assisted biofertilization fostered particularly intricate microbial networks, enhancing synergistic relationships involved in nutrient cycling and biocontrol, though maintaining the stability of these complex interactions requires careful monitoring. Our findings provide key insights into how precision biofertilization with teosinte-derived microbial consortia can sustainably reshape the maize microbiome, improving crop performance and soil resilience.
Collapse
Affiliation(s)
- Juan Alfredo Hernández-García
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Julio S. Bernal
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Esaú De-la-Vega-Camarillo
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Department of Entomology, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Huang H, Li M, Guo Q, Zhang R, Zhang Y, Luo K, Chen Y. Influence of Drought Stress on the Rhizosphere Bacterial Community Structure of Cassava ( Manihot esculenta Crantz). Int J Mol Sci 2024; 25:7326. [PMID: 39000433 PMCID: PMC11242396 DOI: 10.3390/ijms25137326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Drought presents a significant abiotic stress that threatens crop productivity worldwide. Rhizosphere bacteria play pivotal roles in modulating plant growth and resilience to environmental stresses. Despite this, the extent to which rhizosphere bacteria are instrumental in plant responses to drought, and whether distinct cassava (Manihot esculenta Crantz) varieties harbor specific rhizosphere bacterial assemblages, remains unclear. In this study, we measured the growth and physiological characteristics, as well as the physical and chemical properties of the rhizosphere soil of drought-tolerant (SC124) and drought-sensitive (SC8) cassava varieties under conditions of both well-watered and drought stress. Employing 16S rDNA high-throughput sequencing, we analyzed the composition and dynamics of the rhizosphere bacterial community. Under drought stress, biomass, plant height, stem diameter, quantum efficiency of photosystem II (Fv/Fm), and soluble sugar of cassava decreased for both SC8 and SC124. The two varieties' rhizosphere bacterial communities' overall taxonomic structure was highly similar, but there were slight differences in relative abundance. SC124 mainly relied on Gamma-proteobacteria and Acidobacteriae in response to drought stress, and the abundance of this class was positively correlated with soil acid phosphatase. SC8 mainly relied on Actinobacteria in response to drought stress, and the abundance of this class was positively correlated with soil urease and soil saccharase. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of cassava to drought stress and clarified that this process is significantly related to variety.
Collapse
Affiliation(s)
- Huling Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mingchao Li
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiying Guo
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Zhang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yindong Zhang
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Kai Luo
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yinhua Chen
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Yang H, Ji S, Wu D, Zhu M, Lv G. Effects of Root-Root Interactions on the Physiological Characteristics of Haloxylon ammodendron Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:683. [PMID: 38475528 DOI: 10.3390/plants13050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The root traits and response strategies of plants play crucial roles in mediating interactions between plant root systems. Current research on the role of root exudates as underground chemical signals mediating these interactions has focused mainly on crops, with less attention given to desert plants in arid regions. In this study, we focused on the typical desert plant Haloxylon ammodendron and conducted a pot experiment using three root isolation methods (plastic film separation, nylon mesh separation, and no separation). We found that (1) as the degree of isolation increased, plant biomass significantly increased (p < 0.05), while root organic carbon content exhibited the opposite trend; (2) soil electrical conductivity (EC), soil total nitrogen (STN), soil total phosphorus (STP), and soil organic carbon (SOC) were significantly greater in the plastic film and nylon mesh separation treatments than in the no separation treatment (p < 0.05), and the abundance of Proteobacteria and Actinobacteriota was significantly greater in the plastic film separation treatment than in the no separation treatment (p < 0.05); (3) both plastic film and nylon mesh separations increased the secretion of alkaloids derived from tryptophan and phenylalanine in the plant root system compared with that in the no separation treatment; and (4) Pseudomonas, Proteobacteria, sesquiterpenes, triterpenes, and coumarins showed positive correlations, while both pseudomonas and proteobacteria were significantly positively correlated with soil EC, STN, STP, and SOC (p < 0.05). Aurachin D was negatively correlated with Gemmatimonadota and Proteobacteria, and both were significantly correlated with soil pH, EC, STN, STP, and SOC. The present study revealed strong negative interactions between the root systems of H. ammodendron seedlings, in which sesquiterpenoids, triterpenoids, coumarins, and alkaloids released by the roots played an important role in the subterranean competitive relationship. This study provides a deeper understanding of intraspecific interactions in the desert plant H. ammodendron and offers some guidance for future cultivation of this species in the northwestern region of China.
Collapse
Affiliation(s)
- Huifang Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Suwan Ji
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Deyan Wu
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Menghao Zhu
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
4
|
Zhang Z, Zhu J, Ghenijan O, Chen J, Wang Y, Jiang L. Prokaryotic taxonomy and functional diversity assessment of different sequencing platform in a hyper-arid Gobi soil in Xinjiang Turpan Basin, China. Front Microbiol 2023; 14:1211915. [PMID: 38033567 PMCID: PMC10682777 DOI: 10.3389/fmicb.2023.1211915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Turpan Basin located in the eastern Xinjiang is a typical arid inland basin with extremely scarce water resources and a fragile ecosystem. Prokaryotic communities with unique genetic and physiological modifications can survive and function in such harsh environments, offering diverse microbial resources. However, numerous microbes can enter the viable but non-culturable state because of drought stress in the desert soil. In this work, next generation sequencing (NGS) technology based on DNA nanoball sequencing platform (DNBSEQ-G400) and sequencing-by-synthesis platform (NovaSeq 6000) were applied to analyze the prokaryotic diversity in three hyper-arid Gobi soils from Flaming Mountain, Toksun, and Kumtag. The comparison between two platforms indicated that DNBSEQ-G400 had better repeatability and could better reflect the prokaryotic community of this hyper-arid region. The diversity analysis based on DNBSEQ-G400 identified a total of 36 bacterial phyla, including Pseudomonadota, Bacteroidota, Bacillota, Actinomycetota, Methanobacteriota, Acidobacteriota, Nitrososphaerota, and Planctomycetota. The environmental factors, including soluble salt, available potassium, total nitrogen, and organic matter, were positively correlated with the abundance of most prokaryote. In addition, the prokaryotic community assembly in hyper-arid soil was well described by neutral-based models, indicating that the community assembly was mainly controlled by stochastic processes. Finally, the phylogenetic analysis of Actinomycetota proved that such extremophiles played an important role in the ecosystems they colonize. Overall, our result provides a reference for choosing the appropriate sequencing platform and a perspective for the utilization of soil microbial resources from hyper-arid regions.
Collapse
Affiliation(s)
- Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jing Zhu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Osman Ghenijan
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | | | - Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
5
|
Jiao L, Cao X, Wang C, Chen F, Zou H, Yue L, Wang Z. Crosstalk between in situ root exudates and rhizobacteria to promote rice growth by selenium nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163175. [PMID: 37003329 DOI: 10.1016/j.scitotenv.2023.163175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Maximizing the potential of plant-microbe systems offers great opportunities to confront sustainability issues in agroecosystems. However, the dialog between root exudates and rhizobacteria remains largely unknown. As a novel nanofertilizer, nanomaterials (NMs) have significant potential to improve agricultural productivity due to their unique properties. Here, soil amendment with 0.1 mg·kg-1 selenium (Se) NMs (30-50 nm) significantly promoted rice seedling growth. Differences in root exudates and rhizobacteria were evident. At an earlier time point (3rd week), Se NMs increased the relative content of malic and citric acid by 15.4- and 8.1-fold, respectively. Meanwhile, the relative abundances of Streptomyces and Sphingomonas were increased by 164.6 % and 38.3 %, respectively. As the exposure time increased, succinic acid (40.5-fold) at the 4th week and salicylic acid (4.7-fold) and indole-3-acetic (7.0-fold) at the 5th week were enhanced, while Pseudomonas and Bacillus increased at the 4th (112.3 % and 50.2 %) and 5th weeks (190.8 % and 53.1 %), respectively. Further analysis indicated that (1) Se NMs directly enhanced the synthesis and secretion of malic and citric acids by upregulating their biosynthesis and transporter genes and then recruited Bacillus and Pseudomonas; (2) Se NMs upregulated the chemotaxis and flagellar genes of Sphingomonas for more interaction with rice plants, thereby promoting rice growth and stimulating root exudate secretion. This crosstalk of root exudates and rhizobacteria enhanced nutrient uptake, resulting in promoted rice growth. Our study offers insights into the crosstalk between root exudates and rhizobacteria by NMs and provides new insights into rhizosphere regulation in nano-enabled agriculture.
Collapse
Affiliation(s)
- Liya Jiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
6
|
Zhou X, Xiao Y, Ma D, Xie Y, Wang Y, Zhang H, Wang Y. The competitive strategies of poisonous weeds Elsholtzia densa Benth. on the Qinghai Tibet Plateau: Allelopathy and improving soil environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1124139. [PMID: 37152182 PMCID: PMC10161901 DOI: 10.3389/fpls.2023.1124139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Introduction The competitive strategies of plants play a crucial role in their growth. Allelopathy is one of the weapons that plants use to improve their competitive advantage. Methods In order to explore the competitive strategy of a poisonous weed Elsholtzia densa Benth. (E. densa) on the Qinghai-Tibet Plateau (QTP), the effects of decomposing substances of E. densa on growth, root border cells (RBCs) characteristics of highland crop highland barley (Hordeum vulgare L.), and soil environment were determined. Results The decomposing allelopathic effect of E. densa on the germination and seedling growth of highland barley mainly occurred in the early stage of decomposing. The allelopathic effects were mainly on seed germination and root growth of highland barley. After treatment with its decomposing solution, the RBC's mucilage layer of highland barley thickened, and the RBC's activity decreased or even apoptosis compared with the control. However, only the above-ground part of the treatment group showed a significant difference. The effects of E. densa decomposed substances on the soil environment were evaluated from soil physicochemical properties and bacterial community. The results showed that soil bacteria varied greatly in the early stage of decomposion under different concentrations of E. densa. In addition, E. densa decomposing substances increased the soil nutrient content, extracellular enzyme activities, and bacterial community diversity. In the process of decomposition, the bacterial community structure changed constantly, but Actinobacteriota was always the dominant phylum. Discussion These results indicated that E. densa might adopt the following two strategies to help it gain an advantage in the competition: 1. Release allelochemicals that interfere with the defense function of surrounding plants and directly inhibit the growth and development of surrounding plants. 2. By changing the physical and chemical properties of soil and extracellular enzyme activity, residual plant decomposition can stimulate soil microbial activity, improve soil nutrition status, and create a more suitable soil environment for growth.
Collapse
|
7
|
High Proportions of Radiation-Resistant Strains in Culturable Bacteria from the Taklimakan Desert. BIOLOGY 2022; 11:biology11040501. [PMID: 35453702 PMCID: PMC9030528 DOI: 10.3390/biology11040501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Simple Summary Radiation-resistant extremophiles have frequently been found in the Taklimakan Desert, which is known for its harsh conditions. However, there is no systemic study investigating the diversity and proportion of radiation-resistant strains among culturable bacteria. The results of this study revealed the distribution of culturable bacteria in the Taklimakan Desert and indicated high proportions of radiation-resistant strains in the culturable bacteria. The study helps to better understand the ecological origin of radio-resistance and to quantitatively describe the desert as a common habitat for radiation-resistant extremophiles. Abstract The Taklimakan Desert located in China is the second-largest shifting sand desert in the world and is known for its harsh conditions. Types of γ-rays or UV radiation-resistant bacterial strains have been isolated from this desert. However, there is no information regarding the proportions of the radiation-resistant strains in the total culturable microbes. We isolated 352 bacterial strains from nine sites across the Taklimakan Desert from north to south. They belong to Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. The phylum Actinobacteria was the most predominant in abundance and Firmicutes had the highest species richness. Bacteroidetes had the lowest abundance and was found in four sites only, while the other three phyla were found in every site but with different distribution profiles. After irradiating with 1000 J/m2 and 6000 J/m2 UV-C, the strains with survival rates higher than 10% occupied 72.3% and 36.9% of all culturable bacteria, respectively. The members from Proteobacteria had the highest proportions, with survival rates higher than 10%. After radiation with 10 kGy γ-rays, Kocuria sp. TKL1057 and Planococcus sp. TKL1152 showed higher radiation-resistant capabilities than Deinococcus radiodurans R1. Besides obtaining several radiation-resistant extremophiles, this study measured the proportions of the radiation-resistant strains in the total culturable microbes for the first time. This study may help to better understand the origin of radioresistance, especially by quantitatively comparing proportions of radiation-resistant extremophiles from different environments in the future.
Collapse
|
8
|
Frías-Ureña HG, Ruiz-Corral JA, Macías-Rodríguez MÁ, Durán N, Gonzalez D, De Albuquerque F, Torres Morán JP. Relationship between the distribution of vegetation and the environment in the coastal embryo dunes of Jalisco, México. PeerJ 2022; 10:e13015. [PMID: 35256920 PMCID: PMC8898010 DOI: 10.7717/peerj.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/06/2022] [Indexed: 01/11/2023] Open
Abstract
Background The poorly developed soils of the embryo dunes imply little capacity for plant support, however, the adaptation mechanisms of plants respond sensitively to environmental variations, even when these variations are small, which results in a set of specialized habitats and flora that are rarely shared with other terrestrial ecosystems. The coastal dunes of the Mexican Pacific remain vaguely studied, this is why this research explored the relationship between environmental properties and the presence of plant species in the embryo dunes of the coast of Jalisco, Mexico. Methods Twenty-nine sites were sampled, one or two sites per embryo dune, with a random stratified design. Geomorphological and vegetation data were collected at site. Laboratory determinations included soil color, particle size, organic matter, pH, electrical conductivity, magnetite content, and moisture retention. Statistical analysis included correlation analysis to identify relationships between environmental variables; principal component analysis (PCA) and cluster analysis to group dune sites by environmental properties; canonical correspondence analysis (CCA) to determine a possible significant relationship between the presence of plant species and environmental variables; cluster analysis to group dune sites by presence/absence of plant species and correlate both clusters to validate the relationship between them, the salient aspects of this relationship were described and the spatial distribution of the groups was mapped. Results Eleven plant species were identified, six of them exclusive to the embryo dunes and the rest ubiquitous. The incipient development of these soils is reflected in a low content of organic matter, silt, clay, and moisture retention, with scattered data on granulometry, electrical conductivity, organic matter, and magnetite. Some significant correlations were found between some environmental properties, and the CCA showed a significant relationship between the presence of plant species and environmental variables (p-value of the Monte Carlo test = 0.026). The cluster analysis of dune sites according to environmental variables and the cluster analysis by presence/absence of plant species produces the formation of five groups of sites with significant environmental differences and five groups of sites with significant floristic differences. A significant connection (r = 0.471, p = 0.01) between the two clustering schemes also evidences the meaningful relationship between the presence of plant species and the environmental characteristics of the embryo dunes of Jalisco, Mexico. Differences in habitat preferences were observed among plant species exclusive to the embryo dunes; thus, Abronia maritima, Uniola pittieri, and Pectis arenaria showed a preference for embryo dunes with poor edaphic conditions, in contrast to Okenia hypogaea, Canavalia rosea, and Scaevola plumieri, which were mostly found in embryo dunes with higher fertility.
Collapse
Affiliation(s)
| | - José Ariel Ruiz-Corral
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Zapopan, Jalisco, México
| | | | - Noé Durán
- Departamento de Producción Sustentable, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Diego Gonzalez
- Departamento de Producción Sustentable, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Fabio De Albuquerque
- School of Life Sciences Interdisciplinary Graduate Faculty, Arizona State University, Phoenix, Arizona, United States
| | - José Pablo Torres Morán
- Departamento de Producción Sustentable, Universidad de Guadalajara, Zapopan, Jalisco, México
| |
Collapse
|
9
|
Senevirathna STMLD, Krishna KCB, Mahinroosta R, Sathasivan A. Comparative characterization of microbial communities that inhabit PFAS-rich contaminated sites: A case-control study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126941. [PMID: 34474371 DOI: 10.1016/j.jhazmat.2021.126941] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The historic usage and discharge of per- and polyfluoroalkyl substances (PFAS) containing chemicals have produced many contaminated sites and PFAS contamination has become a global concern due to their persistence, widespread distribution, and potential adverse impacts for human and environmental health. However, there have been limited investigations on the specific behavior of bacterial communities in PFAS contaminated soils. In this study, a quantitative PCR assay and Illumina MiSeq sequencing were used to investigate the variations of bacterial communities in a regional Australian airport contaminated with PFAS. The dominate PFAS detected in soil samples was Perfluorooctanesulfonic acid (PFOS), which accounted for 82% of total PFAS and the maximum PFOS level was noted (20,947±1824 ng.PFOS/mg.Soil) at the top soil. Irrespective of the degree of PFAS contamination at different depths, the comparable percentile contribution of each PFAS was observed in soil samples. Significantly higher bacteria amplicon sequence variant (ASV) and diversity were noted in uncontaminated soil than PFAS contaminated soil. Bacterial genera Rhodanobacter and Chujaibacter were dominant in the PFAS contaminated soil. Three different bacterial genera of Alphaproteobacteria, Ambiguous taxa of Acidobacteriia, and genus Chujaibacter of Gammaproteobacteria showed a significant positive correlation and RB41, Gaiella showed a significant negative correlation with 11 different PFAS concentrations. Overall, the results presented in this study suggest that the counts and species diversity of soil microorganisms are adversely influenced by PFAS contamination.
Collapse
Affiliation(s)
- S T M L D Senevirathna
- CSU Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, Panorama Avenue, Bathurst, NSW, Australia; Institute of Land, Water and Society, Charles Sturt University, Australia.
| | - K C Bal Krishna
- School of Engineering, Western Sydney University, Locked Bag 1797, Penrith NSW 2750, Australia
| | - Reza Mahinroosta
- CSU Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, Panorama Avenue, Bathurst, NSW, Australia; Institute of Land, Water and Society, Charles Sturt University, Australia
| | - Arumugam Sathasivan
- School of Engineering, Western Sydney University, Locked Bag 1797, Penrith NSW 2750, Australia
| |
Collapse
|
10
|
Liu Q, Xie S, Zhao X, Liu Y, Xing Y, Dao J, Wei B, Peng Y, Duan W, Wang Z. Drought Sensitivity of Sugarcane Cultivars Shapes Rhizosphere Bacterial Community Patterns in Response to Water Stress. Front Microbiol 2021; 12:732989. [PMID: 34745035 PMCID: PMC8568056 DOI: 10.3389/fmicb.2021.732989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Rhizosphere bacteria, the main functional microorganisms inhabiting the roots of terrestrial plants, play important roles in regulating plant growth and environmental stress resistance. However, limited information is available regarding changes occurring within the structure of the root microbial community and the response mechanisms of host plants that improve adaptability to drought stress. In this study, we conducted an experiment on two sugarcane varieties with different drought tolerance levels under drought and control treatments and analyzed the rhizosphere bacterial communities using 16S rRNA high-throughput sequencing. Correlation analysis results clarified the influence of various factors on the rhizosphere bacterial community structure. Drought stress reduced the diversity of the bacterial community in the rhizosphere of sugarcane. Interestingly, the bacterial community of the drought-sensitive sugarcane cultivar GT39 changed more than that of the drought-tolerant cultivar ZZ9. In addition, ZZ9 had a high abundance of drought-resistant bacteria in the rhizosphere under optimal soil water conditions, whereas GT39 accumulated a large number of drought-resistant bacteria only under drought stress. GT39 mainly relied on Actinobacteria in its response to drought stress, and the abundance of this phylum was positively correlated with soil acid phosphatase and protease levels. In contrast, ZZ9 mainly relied on Bacilli in its response to drought stress, and the abundance of this class was positively correlated with only soil acid phosphatase levels. In conclusion, drought stress can significantly reduce the bacterial diversity and increase the abundance of drought-resistant bacteria in the sugarcane rhizosphere. The high abundance of drought-resistant bacteria in the rhizosphere of drought-tolerant cultivars under non-drought conditions is an important factor contributing to the high drought adaptability of these cultivars. Moreover, the core drought-resistant bacteria of the sugarcane rhizosphere and root exudates jointly affect the resistance of sugarcane to drought.
Collapse
Affiliation(s)
- Qi Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Sasa Xie
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Xiaowen Zhao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yue Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Beilei Wei
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yunchang Peng
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Weixing Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Cui E, Cui B, Fan X, Li S, Gao F. Ryegrass (Lolium multiflorum L.) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147093. [PMID: 33895506 DOI: 10.1016/j.scitotenv.2021.147093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Lolium multiflorum and Brassica juncea display phytoremediation potential for heavy metals and antibiotics pollution. However, there is limited understanding of their function in removing combined pollutants (heavy metals, antibiotics and antibiotic resistance genes (ARGs)) under different cropping patterns. Sole cropping had little effect on heavy metals, but reduced antibiotics by 2.46%-84.88% and increased ARGs by 15.96%-33.82%. Intercropping was more beneficial to soil remediation and plant accumulation of L. multiflorum, and further increased the remediation of antibiotics by 2.38%-54.40%. Members of phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) were mainly responsible for most antibiotics removal. Compared with sole cropping, intercropping reduced more ARGs abundance in rhizosphere soil for L. multiflorum (20.43%) and in bulk soil for B. juncea (23.22%). Mobile genetic elements (MGEs) played a significant role in the variation of ARGs. Further, sample type showed a higher indirect negative impact on ARGs by mainly affecting soil properties and bacterial community, and the co-occurrence between the bacterial community and ARGs in bulk soil was more complex than that in rhizosphere soil. Together these results suggest that phytoremediation of combined soil pollution was positive but limited, and intercropping resulted in enhanced removal efficiency when compared with sole cropping.
Collapse
Affiliation(s)
- Erping Cui
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Bingjian Cui
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xiangyang Fan
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Songjing Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Feng Gao
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| |
Collapse
|
12
|
Climatic Zone and Soil Properties Determine the Biodiversity of the Soil Bacterial Communities Associated to Native Plants from Desert Areas of North-Central Algeria. Microorganisms 2021; 9:microorganisms9071359. [PMID: 34201731 PMCID: PMC8303931 DOI: 10.3390/microorganisms9071359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Algeria is the largest country in Africa characterized by semi-arid and arid sites, located in the North, and hypersaline zones in the center and South of the country. Several autochthonous plants are well known as medicinal plants, having in common tolerance to aridity, drought and salinity. In their natural environment, they live with a great amount of microbial species that altogether are indicated as plant microbiota, while the plants are now viewed as a “holobiont”. In this work, the microbiota of the soil associated to the roots of fourteen economically relevant autochthonous plants from Algeria have been characterized by an innovative metagenomic approach with a dual purpose: (i) to deepen the knowledge of the arid and semi-arid environment and (ii) to characterize the composition of bacterial communities associated with indigenous plants with a strong economic/commercial interest, in order to make possible the improvement of their cultivation. The results presented in this work highlighted specific signatures which are mainly determined by climatic zone and soil properties more than by the plant species.
Collapse
|
13
|
Bacterial Diversity and Community Structure in the Rhizosphere of Four Halophytes. Curr Microbiol 2021; 78:2720-2732. [PMID: 34023980 DOI: 10.1007/s00284-021-02536-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
The study of the rhizosphere microbial community in salinized soils aids in the elucidation of new and important microbial functional groups, which is of great importance in vegetation restoration and ecological reconstruction of salinized soil. The rhizosphere soil bacterial diversity and community structures of four halophytes, including Kalidium foliatum, Lycium ruthenicum, Karelinia caspia and Phragmites australis, typically distributed in the saline-alkaline land of Southern Xinjiang, China, were studied using an Illumina paired-end sequence platform. The study aims to reveal the alpha diversity, species composition, abundance and the differences of rhizosphere bacteria among the four halophytes, explore their correlation with environmental factors. The results showed that the highest bacterial species diversity was associated with P. communis, followed by K. foliatum, K. caspia, and L. ruthenicum. The species richness was the lowest for L. ruthenicum, while the others showed no significant difference. Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes were the most dominant phyla. And Bacillus and Halomonas were the most common dominant genera. The bacterial communities associated with K. foliatum and K. caspia were similar, while that of L. ruthenicum was significantly different from other halophytes. Soil total nitrogen and total phosphorus, soil organic matter, soil water content, electronic conductivity and pH were identified as the key factors affecting bacterial abundance associated with the assayed halophytes. These results indicate that the four halophytes evaluated in the present study have a similar rhizosphere bacterial community structure due to their being in the same region. However, the bacterial abundance is different among the plant species, and soil properties are the important factors driving the structures of bacterial communities.
Collapse
|
14
|
Metagenomic Analysis Exploring Taxonomic and Functional Diversity of Soil Microbial Communities in Sugarcane Fields Applied with Organic Fertilizer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9381506. [PMID: 33145361 PMCID: PMC7596465 DOI: 10.1155/2020/9381506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Organic fertilizers are critically important to soil fertility, microbial communities, and sustainable agricultural strategies. We compared the effect of two fertilizer groups (organic+chemical fertilizer: OM, chemical fertilizer: CK) on sugarcane growth, by observing the difference in microbial communities and functions, soil nutrient status, and agronomic characters of sugarcane. The results showed that the sugar content and yield of sugarcane increased significantly under organic fertilizer treatment. We believe that the increased soil nutrient status and soil microorganisms are the reasons for this phenomenon. In addition, redundancy analysis (RDA) shows that the soil nutrient condition has a major impact on the soil microbial community. In comparison with CK, the species richness of Acidobacteria, Proteobacteria, Chloroflexi, and Gemmatimonadetes as well as the functional abundance of nucleotide metabolism and energy metabolism increased significantly in the OM field. Moreover, compared with CK, genes related to the absorption and biosynthesis of sulfate were more prominent in OM. Therefore, consecutive organic fertilizer application could be an effective method in reference to sustainable production of sugarcane.
Collapse
|
15
|
Barajas HR, Martínez-Sánchez S, Romero MF, Álvarez CH, Servín-González L, Peimbert M, Cruz-Ortega R, García-Oliva F, Alcaraz LD. Testing the Two-Step Model of Plant Root Microbiome Acquisition Under Multiple Plant Species and Soil Sources. Front Microbiol 2020; 11:542742. [PMID: 33162946 PMCID: PMC7581803 DOI: 10.3389/fmicb.2020.542742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
The two-step model for plant root microbiomes considers soil as the primary microbial source. Active selection of the plant’s bacterial inhabitants results in a biodiversity decrease toward roots. We collected sixteen samples of in situ ruderal plant roots and their soils and used these soils as the main microbial input for single genotype tomatoes grown in a greenhouse. Our main goal was to test the soil influence in the structuring of rhizosphere microbiomes, minimizing environmental variability, while testing multiple plant species. We massively sequenced the 16S rRNA and shotgun metagenomes of the soils, in situ plants, and tomato roots. We identified a total of 271,940 bacterial operational taxonomic units (OTUs) within the soils, rhizosphere and endospheric microbiomes. We annotated by homology a total of 411,432 (13.07%) of the metagenome predicted proteins. Tomato roots did follow the two-step model with lower α-diversity than soil, while ruderal plants did not. Surprisingly, ruderal plants are probably working as a microenvironmental oasis providing moisture and plant-derived nutrients, supporting larger α-diversity. Ruderal plants and their soils are closer according to their microbiome community composition than tomato and its soil, based on OTUs and protein comparisons. We expected that tomato β-diversity clustered together with their soil, if it is the main rhizosphere microbiome structuring factor. However, tomato microbiome β-diversity was associated with plant genotype in most samples (81.2%), also supported by a larger set of enriched proteins in tomato rhizosphere than soil or ruderals. The most abundant bacteria found in soils was the Actinobacteria Solirubrobacter soli, ruderals were dominated by the Proteobacteria Sphingomonas sp. URGHD0057, and tomato mainly by the Bacteroidetes Ohtaekwangia koreensis, Flavobacterium terrae, Niastella vici, and Chryseolinea serpens. We calculated a metagenomic tomato root core of 51 bacterial genera and 2,762 proteins, which could be the basis for microbiome-oriented plant breeding programs. We attributed a larger diversity in ruderal plants roots exudates as an effect of the moisture and nutrient acting as a microbial harbor. The tomato and ruderal metagenomic differences are probably due to plant domestication trade-offs, impacting plant-bacteria interactions.
Collapse
Affiliation(s)
- Hugo R Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Shamayim Martínez-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel F Romero
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cristóbal Hernández Álvarez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
16
|
Saline and Arid Soils: Impact on Bacteria, Plants, and their Interaction. BIOLOGY 2020; 9:biology9060116. [PMID: 32498442 PMCID: PMC7344409 DOI: 10.3390/biology9060116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Salinity and drought are the most important abiotic stresses hampering crop growth and yield. It has been estimated that arid areas cover between 41% and 45% of the total Earth area worldwide. At the same time, the world’s population is going to soon reach 9 billion and the survival of this huge amount of people is dependent on agricultural products. Plants growing in saline/arid soil shows low germination rate, short roots, reduced shoot biomass, and serious impairment of photosynthetic efficiency, thus leading to a substantial loss of crop productivity, resulting in significant economic damage. However, plants should not be considered as single entities, but as a superorganism, or a holobiont, resulting from the intimate interactions occurring between the plant and the associated microbiota. Consequently, it is very complex to define how the plant responds to stress on the basis of the interaction with its associated plant growth-promoting bacteria (PGPB). This review provides an overview of the physiological mechanisms involved in plant survival in arid and saline soils and aims at describing the interactions occurring between plants and its bacteriome in such perturbed environments. The potential of PGPB in supporting plant survival and fitness in these environmental conditions has been discussed.
Collapse
|