1
|
Meric-Bernstam F, Yuca E, Evans KW, Zhao M, Maejima T, Karibe T, Raso MG, Tang X, Zheng X, Rizvi YQ, Akcakanat A, Scott SM, Wang B, Byers LA, Tripathy D, Okajima D, Damodaran S. Antitumor Activity and Biomarker Analysis for TROP2 Antibody-Drug Conjugate Datopotamab Deruxtecan in Patient-Derived Breast Cancer Xenograft Models. Clin Cancer Res 2025; 31:573-587. [PMID: 39585341 PMCID: PMC11788653 DOI: 10.1158/1078-0432.ccr-24-1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Datopotamab deruxtecan (Dato-DXd) is a humanized anti-trophoblast cell-surface antigen-2 (TROP2) IgG1 mAb linked to a potent topoisomerase I inhibitor payload (DXd). Dato-DXd has already shown antitumor activity in breast cancer; however, the determinants of response, including the importance of TROP2 expression, remain unclear. We tested the activity of Dato-DXd in a panel of breast cancer patient-derived xenografts (BCX) varying in TROP2 expression. EXPERIMENTAL DESIGN The antitumor activity of Dato-DXd and isotype-control-DXd (IgG-DXd) was assessed against 11 BCXs varying in TROP2 expression, 10 representing tumors postneoadjuvant chemotherapy. Pharmacodynamic effects were assessed at 24 and 72 hours. The effects of TROP2 expression on Dato-DXd activity was assessed in vitro and in vivo using viral overexpression in BCX-derived cell lines. RESULTS Models differed in their sensitivity to both Dato-DXd and IgG-DXd. Dato-DXd (10 mg/kg) led to objective response in 4 (36%) models and statistically significant prolongation of event-free survival in 8 (73%) models, whereas IgG-DXd (10 mg/kg) led to response in 1 (9%) and prolonged event-free survival in 3 (27%) models. TROP2 RNA and protein were significantly higher in Dato-DXd-sensitive models. In isogenic cell lines derived from Dato-DXd-resistant BCXs, overexpression of TROP2 conferred Dato-DXd antitumor activity in vitro and in vivo. Dato-DXd increased γH2AX and phospho-KAP1 in the two Dato-DXd-sensitive BCXs but not in a Dato-DXd-resistant BCX. In Dato-DXd-sensitive models, antitumor activity was enhanced in combination with a PARP inhibitor, olaparib. CONCLUSIONS Dato-DXd is active in breast cancer models. Dato-DXd has TROP2-dependent and -independent mediators of activity; however, high TROP2 expression enhances Dato-DXd antitumor activity.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Xenograft Model Antitumor Assays
- Animals
- Immunoconjugates/pharmacology
- Immunoconjugates/administration & dosage
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Mice
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Camptothecin/analogs & derivatives
- Camptothecin/pharmacology
- Camptothecin/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Disease Models, Animal
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kurt W. Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmeen Qamar Rizvi
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen M. Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bailiang Wang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A. Byers
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Razumovskaya A, Silkina M, Poloznikov A, Kulagin T, Raigorodskaya M, Gorban N, Kudryavtseva A, Fedorova M, Alekseev B, Tonevitsky A, Nikulin S. Predicting patient outcomes with gene-expression biomarkers from colorectal cancer organoids and cell lines. Front Mol Biosci 2025; 12:1531175. [PMID: 39886381 PMCID: PMC11774744 DOI: 10.3389/fmolb.2025.1531175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
Introduction Colorectal cancer (CRC) is characterized by an extremely high mortality rate, mainly caused by the high metastatic potential of this type of cancer. To date, chemotherapy remains the backbone of the treatment of metastatic colorectal cancer. Three main chemotherapeutic drugs used for the treatment of metastatic colorectal cancer are 5-fluorouracil, oxaliplatin and irinotecan which is metabolized to an active compound SN-38. The main goal of this study was to find the genes connected to the resistance to the aforementioned drugs and to construct a predictive gene expression-based classifier to separate responders and non-responders. Methods In this study, we analyzed gene expression profiles of seven patient-derived CRC organoids and performed correlation analyses between gene expression and IC50 values for the three standard-of-care chemotherapeutic drugs. We also included in the study publicly available datasets of colorectal cancer cell lines, thus combining two different in vitro models relevant to cancer research. Logistic regression was used to build gene expression-based classifiers for metastatic Stage IV and non-metastatic Stage II/III CRC patients. Prognostic performance was evaluated through Kaplan-Meier survival analysis and log-rank tests, while independent prognostic significance was assessed using multivariate Cox proportional hazards modeling. Results A small set of genes showed consistent correlation with resistance to chemotherapy across different datasets. While some genes were previously implicated in cancer prognosis and drug response, several were linked to drug resistance for the first time. The resulting gene expression signatures successfully stratified Stage II/III and Stage IV CRC patients, with potential clinical utility for improving treatment outcomes after further validation. Discussion This study highlights the advantages of integrating diverse experimental models, such as organoids and cell lines, to identify novel prognostic biomarkers and enhance the understanding of chemotherapy resistance in CRC.
Collapse
Affiliation(s)
- Alexandra Razumovskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Mariia Silkina
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Poloznikov
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Timur Kulagin
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Maria Raigorodskaya
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nina Gorban
- Central Clinical Hospital with Polyclinic, Administration of the President of the Russian Federation, Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Alekseev
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| | - Sergey Nikulin
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Vind AC, Zhong FL, Bekker-Jensen S. Death by ribosome. Trends Cell Biol 2024:S0962-8924(24)00230-7. [PMID: 39665883 DOI: 10.1016/j.tcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Next to their essential role as protein production factories, ribosomes serve as molecular sensors of cell stress. Stalled and collided ribosomes trigger specific stress signaling, including the ribotoxic stress response (RSR). The RSR is initiated by the mitogen-activated protein (MAP)-3 kinase ZAKα in response to a plethora of translational aberrations, leading to activation of the stress-activated MAP kinases p38 and jun N-terminal kinase (JNK). Recent insights have highlighted an important role for the RSR pathway in triggering programmed cell death processes, including apoptosis and pyroptosis, in a broad range of physiologically relevant conditions. In this review, we summarize recent work on known links between programmed and accidental ribosome toxicity, RSR signaling, and cell death.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore; Skin Research Institute of Singapore (SRIS), A*STAR, Singapore #17-01 Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Yu J, Guo Z, Zhang J. Research progress of the SLFN family in malignant tumors. Front Oncol 2024; 14:1468484. [PMID: 39558948 PMCID: PMC11570580 DOI: 10.3389/fonc.2024.1468484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
The Schlafen (SLFN) gene family has emerged as a critical subject of study in recent years, given its involvement in an array of cellular functions such as proliferation, differentiation, immune responses, viral infection inhibition, and DNA replication. Additionally, SLFN genes are linked to chemosensitivity, playing a pivotal role in treating malignant tumors. Human SLFNs comprise three domains: the N-terminal, middle (M), and C-terminal. The N- and C-terminal domains demonstrate nuclease and helicase/ATPase activities, respectively. Meanwhile, the M-domain likely functions as a linker that connects the enzymatic domains of the N- and C-terminals and may engage in interactions with other proteins. This paper aims to present a comprehensive overview of the SLFN family's structure and sequence, examine its significance in various tumors, and explore its connection with immune infiltrating cells and immune checkpoints. The objective is to assess the potential of SLFNs as vital targets in cancer therapy and propose novel strategies for combined treatment approaches.
Collapse
Affiliation(s)
- Jiale Yu
- Inner Mongolia Medical University, Hohhot, China
- School of Basic Medicine, Chifeng University, Chifeng, China
| | - Zhijuan Guo
- Department of Pathology, Peking University Cancer Hospital & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junyi Zhang
- School of Basic Medicine, Chifeng University, Chifeng, China
| |
Collapse
|
5
|
Sahu D, Shi J, Segura Rueda IA, Chatrath A, Dutta A. Development of a polygenic score predicting drug resistance and patient outcome in breast cancer. NPJ Precis Oncol 2024; 8:219. [PMID: 39358487 PMCID: PMC11447244 DOI: 10.1038/s41698-024-00714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Gene expression profiles of hundreds of cancer cell-lines and the cell-lines' response to drug treatment were analyzed to identify genes whose expression correlated with drug resistance. In the GDSC dataset of 809 cancer cell lines, expression of 36 genes were associated with drug resistance (increased IC50) to many anti-cancer drugs. This was validated in the CTRP dataset of 860 cell lines. A polygenic score derived from the correlation coefficients of the 36 genes in cancer cell lines, UAB36, predicted resistance of cell lines to Tamoxifen. Although the 36 genes were selected from cell line behaviors, UAB36 successfully predicted survival of breast cancer patients in three different cohorts of patients treated with Tamoxifen. UAB36 outperforms two existing predictive gene signatures and is a predictor of outcome of breast cancer patients independent of the known clinical co-variates that affect outcome. This approach should provide promising polygenic biomarkers for resistance in many cancer types against specific drugs.
Collapse
Affiliation(s)
- Divya Sahu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeffrey Shi
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Ajay Chatrath
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Anindya Dutta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
6
|
Kaczorowski M, Ylaya K, Chłopek M, Taniyama D, Pommier Y, Lasota J, Miettinen M. Immunohistochemical Evaluation of Schlafen 11 (SLFN11) Expression in Cancer in the Search of Biomarker-Informed Treatment Targets: A Study of 127 Entities Represented by 6658 Tumors. Am J Surg Pathol 2024:00000478-990000000-00409. [PMID: 39185596 DOI: 10.1097/pas.0000000000002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Schlafen 11 (SLFN11), a DNA/RNA helicase, acts as a regulator of cellular response to replicative stress and irreversibly triggers replication block and cell death. Several preclinical in vitro studies and clinical trials established that SLFN11 expression predicts outcomes in patients with advanced cancer treated with DNA-damaging chemotherapeutics and more recently with poly(ADP-ribose) polymerase inhibitors. SLFN11 expression status remains unknown in many cancer types, especially in mesenchymal tumors. This study evaluated a cohort of well characterized 3808 epithelial and 2850 mesenchymal and neuroectodermal tumors for SLFN11 expression using immunohistochemistry. Nuclear SLFN11 expression was rare in some of the most common carcinomas, for example, hepatocellular (1%), prostatic (2%), colorectal (5%), or breast (16%) cancers. In contrast, other epithelial tumors including mesotheliomas (92%), clear cell renal cell carcinomas (79%), small cell lung cancers (76%), squamous cell carcinomas of the tonsil (89%) and larynx (71%), or ovarian serous carcinomas (69%) were mostly SLFN11-positive. Compared with epithelial malignancies, SLFN11 expression was overall higher in neuroectodermal and mesenchymal tumors. Most positive entities included desmoplastic small round cell tumor (100%), Ewing sarcoma (92%), undifferentiated sarcoma (92%), solitary fibrous tumor (91%), dedifferentiated liposarcoma (89%), synovial sarcoma (86%), and malignant peripheral nerve sheath tumor (85%). Also, this study identifies tumors with potentially worse response to DNA-damaging drugs including antibody drug conjugates due to the absence of SLFN11 expression. Such entities may benefit from alternative treatments or strategies to overcome SLFN11 deficiency-related drug resistance. Our approach and results should serve as a foundation for future biomarker-associated clinical trials.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wrocław, Poland
| | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | | | - Daiki Taniyama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
7
|
Scattolin D, Maso AD, Ferro A, Frega S, Bonanno L, Guarneri V, Pasello G. The emerging role of Schlafen-11 (SLFN11) in predicting response to anticancer treatments: Focus on small cell lung cancer. Cancer Treat Rev 2024; 128:102768. [PMID: 38797062 DOI: 10.1016/j.ctrv.2024.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Small cell lung cancer (SCLC) is characterized by a dismal prognosis. Many efforts have been made so far for identifying novel biomarkers for a personalized treatment for SCLC patients. Schlafen 11 (SLFN11) is a protein differently expressed in many cancers and recently emerged as a new potential biomarker. Lower expression of SLFN11 correlates with a worse prognosis in SCLC and other tumors. SLFN11 has a role in tumorigenesis, inducing replication arrest in the presence of DNA damage through the block of the replication fork. SLFN11 interacts also with chromatin accessibility, proteotoxic stress and mammalian target of rapamycin signalling pathway. The expression of SLFN11 is regulated by epigenetic mechanisms, including promoter methylation, histone deacetylation, and the histone methylation. The downregulation of SLFN11 correlates with a worse response to topoisomerase I and II inhibitors, alkylating agents, and poly ADP-ribose polymerase inhibitors in different cancer types. Some studies exploring strategies for overcoming drug resistance in tumors with low levels of SLFN11 showed promising results. One of these strategies includes the interaction with the Ataxia Telangiectasia and Rad3-related pathway, constitutively activated and leading to cell survival and tumor growth in the presence of low levels of SLFN11. Furthermore, the expression of SLFN11 is dynamic through time and different anticancer therapy and liquid biopsy seems to be an attractive tool for catching SLFN11 different expressions. Despite this, further investigations exploring SLFN11 as a predictive biomarker, its longitudinal changes, and new strategies to overcome drug resistances are needed.
Collapse
Affiliation(s)
- Daniela Scattolin
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | - Alessandra Ferro
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Frega
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
8
|
Boon NJ, Oliveira RA, Körner PR, Kochavi A, Mertens S, Malka Y, Voogd R, van der Horst SEM, Huismans MA, Smabers LP, Draper JM, Wessels LFA, Haahr P, Roodhart JML, Schumacher TNM, Snippert HJ, Agami R, Brummelkamp TR. DNA damage induces p53-independent apoptosis through ribosome stalling. Science 2024; 384:785-792. [PMID: 38753784 DOI: 10.1126/science.adh7950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.
Collapse
Affiliation(s)
- Nicolaas J Boon
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rafaela A Oliveira
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pierré-René Körner
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Adva Kochavi
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sander Mertens
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yuval Malka
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Suzanne E M van der Horst
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten A Huismans
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lidwien P Smabers
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jonne M Draper
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Peter Haahr
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Center for Gene Expression, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeanine M L Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ton N M Schumacher
- Oncode Institute, Utrecht, Netherlands
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Hugo J Snippert
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Reuven Agami
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
9
|
Nelson BE, Meric-Bernstam F. Leveraging TROP2 Antibody-Drug Conjugates in Solid Tumors. Annu Rev Med 2024; 75:31-48. [PMID: 37758237 DOI: 10.1146/annurev-med-071322-065903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Antibody-drug conjugates (ADCs) have become the cornerstone of effective therapeutics in solid and hematological malignancies by harnessing potent cytotoxic payloads with targeted tumoricidal delivery. Since the monumental shift occurred with HER2-targeted ADCs, the discovery of the TROP2 antigen has revolutionized the landscape of ADC development. Moving beyond the traditional ADC design, multiple novel ADCs have successfully shaped and improved survival outcomes in patients with various tumor histologies. Here we review and contrast the clinical impact of the well-known TROP2 ADCs currently in clinical use. We also shed light on upcoming investigational TROP2 ADCs showing promise with novel ADC platforms.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
10
|
Watanabe K, Seki N. Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int J Mol Sci 2024; 25:752. [PMID: 38255825 PMCID: PMC10815806 DOI: 10.3390/ijms25020752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-targeted drugs constitute a specialized category of pharmaceuticals developed for cancer treatment, directly influencing various cellular processes involving DNA. These drugs aim to enhance treatment efficacy and minimize side effects by specifically targeting molecules or pathways crucial to cancer growth. Unlike conventional chemotherapeutic drugs, recent discoveries have yielded DNA-targeted agents with improved effectiveness, and a new generation is anticipated to be even more specific and potent. The sequencing of the human genome in 2001 marked a transformative milestone, contributing significantly to the advancement of targeted therapy and precision medicine. Anticipated progress in precision medicine is closely tied to the continuous development in the exploration of synthetic lethality, DNA repair, and expression regulatory mechanisms, including epigenetic modifications. The integration of technologies like circulating tumor DNA (ctDNA) analysis further enhances our ability to elucidate crucial regulatory factors, promising a more effective era of precision medicine. The combination of genomic knowledge and technological progress has led to a surge in clinical trials focusing on precision medicine. These trials utilize biomarkers for identifying genetic alterations, molecular profiling for potential therapeutic targets, and tailored cancer treatments addressing multiple genetic changes. The evolving landscape of genomics has prompted a paradigm shift from tumor-centric to individualized, genome-directed treatments based on biomarker analysis for each patient. The current treatment strategy involves identifying target genes or pathways, exploring drugs affecting these targets, and predicting adverse events. This review highlights strategies incorporating DNA-targeted drugs, such as PARP inhibitors, SLFN11, methylguanine methyltransferase (MGMT), and ATR kinase.
Collapse
Affiliation(s)
- Kiyotaka Watanabe
- Department of Medicine, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
11
|
Miladinov M, Rosic J, Eric K, Guzonjic A, Jelenkovic J, Bogavac-Stanojevic N, Dimitrijevic I, Kotur-Stevuljevic J, Barisic G. Analysis of the Prognostic Potential of Schlafen 11, Programmed Death Ligand 1, and Redox Status in Colorectal Cancer Patients. Int J Mol Sci 2023; 24:15083. [PMID: 37894765 PMCID: PMC10606719 DOI: 10.3390/ijms242015083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The Schlafen 11 (SLFN11) protein has recently emerged as pivotal in DNA damage conditions, with predictive potential for tumor response to cytotoxic chemotherapies. Recent discoveries also showed that the programmed death ligand 1 (PD-L1) protein can be found on malignant cells, providing an immune evasion mechanism exploited by different tumors. Additionally, excessive generation of free radicals, redox imbalance, and consequential DNA damage can affect intestinal cell homeostasis and lead to neoplastic transformation. Therefore, our study aimed to investigate the significance of SLFN11 and PD-L1 proteins and redox status parameters as prognostic biomarkers in CRC patients. This study included a total of 155 CRC patients. SLFN11 and PD-L1 serum levels were measured with ELISA and evaluated based on redox status parameters, sociodemographic and clinical characteristics, and survival. The following redox status parameters were investigated: spectrophotometrically measured superoxide dismutase (SOD), sulfhydryl (SH) groups, advanced oxidation protein products (AOPP), malondialdehyde (MDA), pro-oxidant-antioxidant balance (PAB), and superoxide anion (O2•-). The prooxidative score, antioxidative score, and OXY-SCORE were also calculated. The results showed significantly shorter survival in patients with higher OXY-SCOREs and higher levels of serum SLFN11, while only histopathology-analysis-related factors showed significant prognostic value. OXY-SCORE and SLFN11 levels may harbor prognostic potential in CRC patients.
Collapse
Affiliation(s)
- Marko Miladinov
- Clinic for Digestive Surgery-First Surgical Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Jovana Rosic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Katarina Eric
- Department of Pathology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Azra Guzonjic
- Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelenko Jelenkovic
- Clinic for Digestive Surgery-First Surgical Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | | | - Ivan Dimitrijevic
- Clinic for Digestive Surgery-First Surgical Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Goran Barisic
- Clinic for Digestive Surgery-First Surgical Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Zhao M, DiPeri TP, Raso MG, Zheng X, Rizvi YQ, Evans KW, Yang F, Akcakanat A, Roberto Estecio M, Tripathy D, Dumbrava EE, Damodaran S, Meric-Bernstam F. Epigenetically upregulating TROP2 and SLFN11 enhances therapeutic efficacy of TROP2 antibody drug conjugate sacitizumab govitecan. NPJ Breast Cancer 2023; 9:66. [PMID: 37567892 PMCID: PMC10421911 DOI: 10.1038/s41523-023-00573-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
TROP2 antibody drug conjugates (ADCs) are under active development. We seek to determine whether we can enhance activity of TROP2 ADCs by increasing TROP2 expression. In metaplastic breast cancers (MpBC), there is limited expression of TROP2, and downregulating transcription factor ZEB1 upregulates E-cad and TROP2, thus sensitizing cancers to TROP2 ADC sacituzumab govitecan (SG). Demethylating agent decitabine decreases DNA methyltransferase expression and TROP2 promoter methylation and subsequently increases TROP2 expression. Decitabine treatment as well as overexpression of TROP2 significantly enhance SG antitumor activity. Decitabine also increases SLFN11, a biomarker of topoisomerase 1 inhibitor (TOP1) sensitivity and is synergistic with SG which has a TOP1 payload, in TROP2-expressing SLFN11-low BC cells. In conclusion, TROP2 and SLFN11 expression can be epigenetically modulated and the combination of demethylating agent decitabine with TROP2 ADCs may represent a novel therapeutic approach for tumors with low TROP2 or SLFN11 expression.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P DiPeri
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yasmeen Qamar Rizvi
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Roberto Estecio
- Department of Epigenetic and Molecular Carcinogenesis, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Can Schlafen 11 Help to Stratify Ovarian Cancer Patients Treated with DNA-Damaging Agents? Cancers (Basel) 2022; 14:cancers14102353. [PMID: 35625957 PMCID: PMC9139752 DOI: 10.3390/cancers14102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Platinum-based chemotherapy has been the cornerstone of systemic treatment in ovarian cancer. Since no validated molecular predictive markers have been identified yet, the response to platinum-based chemotherapy has been evaluated clinically, based on platinum-free interval. The new promising marker Schlafen 11 seems to correlate with sensitivity or resistance to DNA-damaging agents, including platinum compounds or PARP inhibitors in various types of cancer. We provide background information about the function of Schlafen 11, its evaluation in tumor tissue, and its prevalence in ovarian cancer. We discuss the current evidence of the correlation of Schlafen 11 expression in ovarian cancer with treatment outcomes and the potential use of Schlafen 11 as the key predictive and prognostic marker that could help to better stratify ovarian cancer patients treated with platinum-based chemotherapy or PARP inhibitors. We also provide perspectives on future directions in the research on this promising marker.
Collapse
|
14
|
Raafat Elsayed AA, Al-Marsoummi S, Vomhof-Dekrey EE, Basson MD. SLFN12 Over-expression Sensitizes Triple Negative Breast Cancer Cells to Chemotherapy Drugs and Radiotherapy. Cancer Genomics Proteomics 2022; 19:328-338. [PMID: 35430566 PMCID: PMC9016483 DOI: 10.21873/cgp.20323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Schlafen 12 (SLFN12) expression correlates with survival in triple negative breast cancer (TNBC). SLFN12 slows TNBC proliferation and induces TNBC differentiation, but whether SLFN12 affects the tumoral response to chemotherapy or radiation is unknown. MATERIALS AND METHODS We over-expressed SLFN12 in MDA-MB-231 cells using two different lentiviral vectors. We assessed viable cell numbers via crystal violet assay after treatment with carboplatin, paclitaxel, olaparib, zoledronic acid, camptothecin, or cesium irradiation. CHK1 and CHK2 phosphorylation was assessed by western blot and the effects of inhibiting CHK1/CHK2 by AZD7762 were examined. Key findings were confirmed in Hs578t and BT549 TNBC cells after adenoviral SLFN12 over-expression. RESULTS SLFN12 over-expression increased TNBC sensitivity to radiation, carboplatin, paclitaxel, zoledronic acid, and camptothecin, but not to olaparib. SLFN12 over-expression decreased CHK1 and CHK2 phosphorylation after treatment with the DNA damaging agent camptothecin (CPT). The CHK1/CHK2 inhibitor diminished the significant cytotoxicity difference between over-expression and baseline SLFN12 levels in response to carboplatin. CONCLUSION SLFN12 increases TNBC sensitivity to DNA-damaging agents at least in part by reducing CHK1/2 phosphorylation. This may contribute to improved survival in patients whose TNBC over-expresses SLFN12. Therefore, SLFN12 levels may be used to customize or predict radiotherapy and chemotherapy effects in TNBC.
Collapse
Affiliation(s)
- Ahmed Adham Raafat Elsayed
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Sarmad Al-Marsoummi
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Emilie E Vomhof-Dekrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Marc D Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A.;
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| |
Collapse
|
15
|
Schlafens Can Put Viruses to Sleep. Viruses 2022; 14:v14020442. [PMID: 35216035 PMCID: PMC8875196 DOI: 10.3390/v14020442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
The Schlafen gene family encodes for proteins involved in various biological tasks, including cell proliferation, differentiation, and T cell development. Schlafens were initially discovered in mice, and have been studied in the context of cancer biology, as well as their role in protecting cells during viral infection. This protein family provides antiviral barriers via direct and indirect effects on virus infection. Schlafens can inhibit the replication of viruses with both RNA and DNA genomes. In this review, we summarize the cellular functions and the emerging relationship between Schlafens and innate immunity. We also discuss the functions and distinctions of this emerging family of proteins as host restriction factors against viral infection. Further research into Schlafen protein function will provide insight into their mechanisms that contribute to intrinsic and innate host immunity.
Collapse
|
16
|
Metzner FJ, Huber E, Hopfner KP, Lammens K. Structural and biochemical characterization of human Schlafen 5. Nucleic Acids Res 2022; 50:1147-1161. [PMID: 35037067 PMCID: PMC8789055 DOI: 10.1093/nar/gkab1278] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
The Schlafen family belongs to the interferon-stimulated genes and its members are involved in cell cycle regulation, T cell quiescence, inhibition of viral replication, DNA-repair and tRNA processing. Here, we present the cryo-EM structure of full-length human Schlafen 5 (SLFN5) and the high-resolution crystal structure of the highly conserved N-terminal core domain. We show that the core domain does not resemble an ATPase-like fold and neither binds nor hydrolyzes ATP. SLFN5 binds tRNA as well as single- and double-stranded DNA, suggesting a potential role in transcriptional regulation. Unlike rat Slfn13 or human SLFN11, human SLFN5 did not cleave tRNA. Based on the structure, we identified two residues in proximity to the zinc finger motif that decreased DNA binding when mutated. These results indicate that Schlafen proteins have divergent enzymatic functions and provide a structural platform for future biochemical and genetic studies.
Collapse
Affiliation(s)
- Felix J Metzner
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Elisabeth Huber
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Katja Lammens
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
17
|
Tserpeli V, Stergiopoulou D, Londra D, Giannopoulou L, Buderath P, Balgkouranidou I, Xenidis N, Grech C, Obermayr E, Zeillinger R, Pavlakis K, Rampias T, Kakolyris S, Kasimir-Bauer S, Lianidou ES. Prognostic Significance of SLFN11 Methylation in Plasma Cell-Free DNA in Advanced High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010004. [PMID: 35008168 PMCID: PMC8750111 DOI: 10.3390/cancers14010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Epigenetic alterations in ctDNA are highly promising as a source of novel potential liquid biopsy biomarkers and comprise a very promising liquid biopsy approach in ovarian cancer, for early diagnosis, prognosis and response to treatment. Methods: In the present study, we examined the methylation status of six gene promoters (BRCA1, CST6, MGMT, RASSF10, SLFN11 and USP44) in high-grade serous ovarian cancer (HGSOC). We evaluated the prognostic significance of DNA methylation of these six gene promoters in primary tumors (FFPEs) and plasma cfDNA samples from patients with early, advanced and metastatic HGSOC. Results: We report for the first time that the DNA methylation of SLFN11 in plasma cfDNA was significantly correlated with worse PFS (p = 0.045) in advanced stage HGSOC. Conclusions: Our results strongly indicate that SLFN11 epigenetic inactivation could be a predictor of resistance to platinum drugs in ovarian cancer. Our results should be further validated in studies based on a larger cohort of patients, in order to further explore whether the DNA methylation of SLFN11 promoter could serve as a potential prognostic DNA methylation biomarker and a predictor of resistance to platinum-based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Victoria Tserpeli
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Dimitra Stergiopoulou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Dora Londra
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Lydia Giannopoulou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany; (P.B.); (S.K.-B.)
| | - Ioanna Balgkouranidou
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Nikolaos Xenidis
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Christina Grech
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Eva Obermayr
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Kitty Pavlakis
- Pathology Department, IASO Women’s Hospital, 15123 Athens, Greece;
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Stylianos Kakolyris
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany; (P.B.); (S.K.-B.)
| | - Evi S. Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
- Correspondence: ; Tel.: +30-210-7274311
| |
Collapse
|
18
|
A wake-up call for cancer DNA damage: the role of Schlafen 11 (SLFN11) across multiple cancers. Br J Cancer 2021; 125:1333-1340. [PMID: 34294893 PMCID: PMC8576031 DOI: 10.1038/s41416-021-01476-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
DNA-damaging agents exploit increased genomic instability, a hallmark of cancer. Recently, inhibitors targeting the DNA damage response (DDR) pathways, such as PARP inhibitors, have also shown promising therapeutic potential. However, not all tumors respond well to these treatments, suggesting additional determinants of response are required. Schlafen 11 (SLFN11), a putative DNA/RNA helicase that induces irreversible replication block, is emerging as an important regulator of cellular response to DNA damage. Preclinical and emerging clinical trial data suggest that SLFN11 is a predictive biomarker of response to a wide range of therapeutics that cause DNA damage including platinum salts and topoisomerase I/II inhibitors, as well as PARP inhibitors, which has raised exciting possibilities for its clinical application. In this article, we review the function, prevalence, and clinical testing of SLFN11 in tumor biopsy samples and circulating tumor cells. We discuss mounting evidence of SLFN11 as a key predictive biomarker for a wide range of cancer therapeutics and as a prognostic marker across several cancer types. Furthermore, we discuss emerging areas of investigation such as epigenetic reactivation of SLFN11 and its role in activating immune response. We then provide perspectives on open questions and future directions in studying this important biomarker.
Collapse
|
19
|
Willis SE, Winkler C, Roudier MP, Baird T, Marco-Casanova P, Jones EV, Rowe P, Rodriguez-Canales J, Angell HK, Ng FSL, Waring PM, Hodgson D, Ledermann JA, Weberpals JI, Dean E, Harrington EA, Barrett JC, Pierce AJ, Leo E, Jones GN. Retrospective analysis of Schlafen11 (SLFN11) to predict the outcomes to therapies affecting the DNA damage response. Br J Cancer 2021; 125:1666-1676. [PMID: 34663950 PMCID: PMC8651811 DOI: 10.1038/s41416-021-01560-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background The absence of the putative DNA/RNA helicase Schlafen11 (SLFN11) is thought to cause resistance to DNA-damaging agents (DDAs) and PARP inhibitors. Methods We developed and validated a clinically applicable SLFN11 immunohistochemistry assay and retrospectively correlated SLFN11 tumour levels to patient outcome to the standard of care therapies and olaparib maintenance. Results High SLFN11 associated with improved prognosis to the first-line treatment with DDAs platinum-plus-etoposide in SCLC patients, but was not strongly linked to paclitaxel–platinum response in ovarian cancer patients. Multivariate analysis of patients with relapsed platinum-sensitive ovarian cancer from the randomised, placebo-controlled Phase II olaparib maintenance Study19 showed SLFN11 tumour levels associated with sensitivity to olaparib. Study19 patients with high SLFN11 had a lower progression-free survival (PFS) hazard ratio compared to patients with low SLFN11, although both groups had the benefit of olaparib over placebo. Whilst caveated by small sample size, this trend was maintained for PFS, but not overall survival, when adjusting for BRCA status across the olaparib and placebo treatment groups, a key driver of PARP inhibitor sensitivity. Conclusion We provide clinical evidence supporting the role of SLFN11 as a DDA therapy selection biomarker in SCLC and highlight the need for further clinical investigation into SLFN11 as a PARP inhibitor predictive biomarker.
Collapse
Affiliation(s)
- Sophie E Willis
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Tarrion Baird
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Emma V Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Philip Rowe
- GMD, Oncology R&D, AstraZeneca, Macclesfield, UK
| | | | - Helen K Angell
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Felicia S L Ng
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Paul M Waring
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Darren Hodgson
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Jonathan A Ledermann
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute, London, UK
| | | | - Emma Dean
- Clinical, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - J Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
20
|
Winkler C, King M, Berthe J, Ferraioli D, Garuti A, Grillo F, Rodriguez-Canales J, Ferrando L, Chopin N, Ray-Coquard I, Delpuech O, Rinchai D, Bedognetti D, Ballestrero A, Leo E, Zoppoli G. SLFN11 captures cancer-immunity interactions associated with platinum sensitivity in high-grade serous ovarian cancer. JCI Insight 2021; 6:146098. [PMID: 34549724 PMCID: PMC8492341 DOI: 10.1172/jci.insight.146098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/28/2021] [Indexed: 01/30/2023] Open
Abstract
Large independent analyses on cancer cell lines followed by functional studies have identified Schlafen 11 (SLFN11), a putative helicase, as the strongest predictor of sensitivity to DNA-damaging agents (DDAs), including platinum. However, its role as a prognostic biomarker is undefined, partially due to the lack of validated methods to score SLFN11 in human tissues. Here, we implemented a pipeline to quantify SLFN11 in human cancer samples. By analyzing a cohort of high-grade serous ovarian carcinoma (HGSOC) specimens before platinum-based chemotherapy treatment, we show, for the first time to our knowledge, that SLFN11 density in both the neoplastic and microenvironmental components was independently associated with favorable outcome. We observed SLFN11 expression in both infiltrating innate and adaptive immune cells, and analyses in a second, independent, cohort revealed that SLFN11 was associated with immune activation in HGSOC. We found that platinum treatments activated immune-related pathways in ovarian cancer cells in an SLFN11-dependent manner, representative of tumor-immune transactivation. Moreover, SLFN11 expression was induced in activated, isolated immune cell subpopulations, hinting that SLFN11 in the immune compartment may be an indicator of immune transactivation. In summary, we propose SLFN11 is a dual biomarker capturing simultaneously interconnected immunological and cancer cell–intrinsic functional dispositions associated with sensitivity to DDA treatment.
Collapse
Affiliation(s)
| | | | - Julie Berthe
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Anna Garuti
- Department of Internal Medicine and Medical Specialties and
| | - Federica Grillo
- Department of Integrated Surgical and Diagnostic Sciences, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | | | | | | | | | - Davide Bedognetti
- Department of Internal Medicine and Medical Specialties and.,Cancer Research Department, Sidra Medicine, Doha, Qatar.,Hamad Bin Khalifa University, Doha, Qatar
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties and.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties and.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
21
|
Schlafens: Emerging Proteins in Cancer Cell Biology. Cells 2021; 10:cells10092238. [PMID: 34571887 PMCID: PMC8465726 DOI: 10.3390/cells10092238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Schlafens (SLFN) are a family of genes widely expressed in mammals, including humans and rodents. These intriguing proteins play different roles in regulating cell proliferation, cell differentiation, immune cell growth and maturation, and inhibiting viral replication. The emerging evidence is implicating Schlafens in cancer biology and chemosensitivity. Although Schlafens share common domains and a high degree of homology, different Schlafens act differently. In particular, they show specific and occasionally opposing effects in some cancer types. This review will briefly summarize the history, structure, and non-malignant biological functions of Schlafens. The roles of human and mouse Schlafens in different cancer types will then be outlined. Finally, we will discuss the implication of Schlafens in the anti-tumor effect of interferons and the use of Schlafens as predictors of chemosensitivity.
Collapse
|
22
|
Herzog BH, Devarakonda S, Govindan R. Overcoming Chemotherapy Resistance in SCLC. J Thorac Oncol 2021; 16:2002-2015. [PMID: 34358725 DOI: 10.1016/j.jtho.2021.07.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
SCLC is an aggressive form of lung cancer with a very poor prognosis. Although SCLC initially responds very well to platinum-based chemotherapy, it eventually recurs and at recurrence is nearly universally resistant to therapy. In light of the recent advances in understanding regarding the biology of SCLC, we review findings related to SCLC chemotherapy resistance. We discuss the potential clinical implications of recent preclinical discoveries in altered signaling pathways, transcriptional landscapes, metabolic vulnerabilities, and the tumor microenvironment.
Collapse
Affiliation(s)
- Brett H Herzog
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Siddhartha Devarakonda
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
23
|
Takebe N, Naqash AR, O'Sullivan Coyne G, Kummar S, Do K, Bruns A, Juwara L, Zlott J, Rubinstein L, Piekarz R, Sharon E, Streicher H, Mittra A, Miller SB, Ji J, Wilsker D, Kinders RJ, Parchment RE, Chen L, Chang TC, Das B, Mugundu G, Doroshow JH, Chen AP. Safety, Antitumor Activity, and Biomarker Analysis in a Phase I Trial of the Once-daily Wee1 Inhibitor Adavosertib (AZD1775) in Patients with Advanced Solid Tumors. Clin Cancer Res 2021; 27:3834-3844. [PMID: 33863809 PMCID: PMC8282703 DOI: 10.1158/1078-0432.ccr-21-0329] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The Wee1 kinase inhibitor adavosertib abrogates cell-cycle arrest, leading to cell death. Prior testing of twice-daily adavosertib in patients with advanced solid tumors determined the recommended phase II dose (RPh2D). Here, we report results for once-daily adavosertib. PATIENTS AND METHODS A 3 + 3 dose-escalation design was used, with adavosertib given once daily on days 1 to 5 and 8 to 12 in 21-day cycles. Molecular biomarkers of Wee1 activity, including tyrosine 15-phosphorylated Cdk1/2 (pY15-Cdk), were assessed in paired tumor biopsies. Whole-exome sequencing and RNA sequencing of remaining tumor tissue identified potential predictive biomarkers. RESULTS Among the 42 patients enrolled, the most common toxicities were gastrointestinal and hematologic; dose-limiting toxicities were grade 4 hematologic toxicity and grade 3 fatigue. The once-daily RPh2D was 300 mg. Six patients (14%) had confirmed partial responses: four ovarian, two endometrial. Adavosertib plasma exposures were similar to those from twice-daily dosing. On cycle 1 day 8 (pre-dose), tumor pY15-Cdk levels were higher than baseline in four of eight patients, suggesting target rebound during the day 5 to 8 dosing break. One patient who progressed rapidly had a tumor WEE1 mutation and potentially compensatory PKMYT1 overexpression. Baseline CCNE1 overexpression occurred in both of two responding patients, only one of whom had CCNE1 amplification, and in zero of three nonresponding patients. CONCLUSIONS We determined the once-daily adavosertib RPh2D and observed activity in patients with ovarian or endometrial carcinoma, including two with baseline CCNE1 mRNA overexpression. Future studies will determine whether CCNE1 overexpression is a predictive biomarker for adavosertib.
Collapse
Affiliation(s)
- Naoko Takebe
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Geraldine O'Sullivan Coyne
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| | - Khanh Do
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ashley Bruns
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Lamin Juwara
- Clinical Monitoring Research Program, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jennifer Zlott
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Larry Rubinstein
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Richard Piekarz
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Elad Sharon
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Howard Streicher
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Arjun Mittra
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Sarah B Miller
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Jiuping Ji
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Deborah Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert J Kinders
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Li Chen
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ting-Chia Chang
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Biswajit Das
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ganesh Mugundu
- AstraZeneca, Clinical Pharmacology, Waltham, Massachusetts
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland.
- Center for Cancer Research, NCI, Bethesda, Maryland
| |
Collapse
|
24
|
Chromatin Remodeling and Immediate Early Gene Activation by SLFN11 in Response to Replication Stress. Cell Rep 2021; 30:4137-4151.e6. [PMID: 32209474 DOI: 10.1016/j.celrep.2020.02.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Schlafen 11 (SLFN11) was recently discovered as a cellular restriction factor against replication stress. Here, we show that SLFN11 increases chromatin accessibility genome wide, prominently at active promoters in response to replication stress induced by the checkpoint kinase 1 (CHK1) inhibitor prexasertib or the topoisomerase I (TOP1) inhibitor camptothecin. Concomitantly, SLFN11 selectively activates cellular stress response pathways by inducing the transcription of the immediate early genes (IEGs), including JUN, FOS, EGR1, NFKB2, and ATF3, together with the cell cycle arrest genes CDKN1A (p21WAF1) and GADD45. Both chromatin remodeling and IEG activation require the putative ATPase and helicase activity of SLFN11, whereas canonical extrinsic IEG activation is SLFN11 independent. SLFN11-dependent IEG activation by camptothecin is also observed across 55 non-isogenic NCI-60 cell lines. We conclude that SLFN11 acts as a global regulator of chromatin structure and an intrinsic IEG activator with the potential to engage the innate immune activation in response to replicative stress.
Collapse
|
25
|
Wells JD, Griffin JR, Miller TW. Pan-Cancer Transcriptional Models Predicting Chemosensitivity in Human Tumors. Cancer Inform 2021; 20:11769351211002494. [PMID: 33795931 PMCID: PMC7983245 DOI: 10.1177/11769351211002494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/14/2021] [Indexed: 11/17/2022] Open
Abstract
MOTIVATION Despite increasing understanding of the molecular characteristics of cancer, chemotherapy success rates remain low for many cancer types. Studies have attempted to identify patient and tumor characteristics that predict sensitivity or resistance to different types of conventional chemotherapies, yet a concise model that predicts chemosensitivity based on gene expression profiles across cancer types remains to be formulated. We attempted to generate pan-cancer models predictive of chemosensitivity and chemoresistance. Such models may increase the likelihood of identifying the type of chemotherapy most likely to be effective for a given patient based on the overall gene expression of their tumor. RESULTS Gene expression and drug sensitivity data from solid tumor cell lines were used to build predictive models for 11 individual chemotherapy drugs. Models were validated using datasets from solid tumors from patients. For all drug models, accuracy ranged from 0.81 to 0.93 when applied to all relevant cancer types in the testing dataset. When considering how well the models predicted chemosensitivity or chemoresistance within individual cancer types in the testing dataset, accuracy was as high as 0.98. Cell line-derived pan-cancer models were able to statistically significantly predict sensitivity in human tumors in some instances; for example, a pan-cancer model predicting sensitivity in patients with bladder cancer treated with cisplatin was able to significantly segregate sensitive and resistant patients based on recurrence-free survival times (P = .048) and in patients with pancreatic cancer treated with gemcitabine (P = .038). These models can predict chemosensitivity and chemoresistance across cancer types with clinically useful levels of accuracy.
Collapse
Affiliation(s)
- Jason D Wells
- Department of Molecular & Systems
Biology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel
School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jacqueline R Griffin
- Department of Molecular & Systems
Biology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel
School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular & Systems
Biology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel
School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Comprehensive Breast
Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth,
Lebanon, NH, USA
| |
Collapse
|
26
|
Neary B, Zhou J, Qiu P. Identifying gene expression patterns associated with drug-specific survival in cancer patients. Sci Rep 2021; 11:5004. [PMID: 33654134 PMCID: PMC7925648 DOI: 10.1038/s41598-021-84211-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to predict the efficacy of cancer treatments is a longstanding goal of precision medicine that requires improved understanding of molecular interactions with drugs and the discovery of biomarkers of drug response. Identifying genes whose expression influences drug sensitivity can help address both of these needs, elucidating the molecular pathways involved in drug efficacy and providing potential ways to predict new patients’ response to available therapies. In this study, we integrated cancer type, drug treatment, and survival data with RNA-seq gene expression data from The Cancer Genome Atlas to identify genes and gene sets whose expression levels in patient tumor biopsies are associated with drug-specific patient survival using a log-rank test comparing survival of patients with low vs. high expression for each gene. This analysis was successful in identifying thousands of such gene–drug relationships across 20 drugs in 14 cancers, several of which have been previously implicated in the respective drug’s efficacy. We then clustered significant genes based on their expression patterns across patients and defined gene sets that are more robust predictors of patient outcome, many of which were significantly enriched for target genes of one or more transcription factors, indicating several upstream regulatory mechanisms that may be involved in drug efficacy. We identified a large number of genes and gene sets that were potentially useful as transcript-level biomarkers for predicting drug-specific patient survival outcome. Our gene sets were robust predictors of drug-specific survival and our results included both novel and previously reported findings, suggesting that the drug-specific survival marker genes reported herein warrant further investigation for insights into drug mechanisms and for validation as biomarkers to aid cancer therapy decisions.
Collapse
Affiliation(s)
- Bridget Neary
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jie Zhou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
27
|
Winkler C, Armenia J, Jones GN, Tobalina L, Sale MJ, Petreus T, Baird T, Serra V, Wang AT, Lau A, Garnett MJ, Jaaks P, Coker EA, Pierce AJ, O'Connor MJ, Leo E. SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. Br J Cancer 2021; 124:951-962. [PMID: 33339894 PMCID: PMC7921667 DOI: 10.1038/s41416-020-01199-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Schlafen 11 (SLFN11) has been linked with response to DNA-damaging agents (DDA) and PARP inhibitors. An in-depth understanding of several aspects of its role as a biomarker in cancer is missing, as is a comprehensive analysis of the clinical significance of SLFN11 as a predictive biomarker to DDA and/or DNA damage-response inhibitor (DDRi) therapies. METHODS We used a multidisciplinary effort combining specific immunohistochemistry, pharmacology tests, anticancer combination therapies and mechanistic studies to assess SLFN11 as a potential biomarker for stratification of patients treated with several DDA and/or DDRi in the preclinical and clinical setting. RESULTS SLFN11 protein associated with both preclinical and patient treatment response to DDA, but not to non-DDA or DDRi therapies, such as WEE1 inhibitor or olaparib in breast cancer. SLFN11-low/absent cancers were identified across different tumour types tested. Combinations of DDA with DDRi targeting the replication-stress response (ATR, CHK1 and WEE1) could re-sensitise SLFN11-absent/low cancer models to the DDA treatment and were effective in upper gastrointestinal and genitourinary malignancies. CONCLUSION SLFN11 informs on the standard of care chemotherapy based on DDA and the effect of selected combinations with ATR, WEE1 or CHK1 inhibitor in a wide range of cancer types and models.
Collapse
Affiliation(s)
| | - Joshua Armenia
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Luis Tobalina
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Matthew J Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridge, UK
| | - Tudor Petreus
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Tarrion Baird
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d' Hebron Institute of Oncology, Barcelona, Spain
| | | | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
28
|
Dong S, Song C, Qi B, Jiang X, Liu L, Xu Y. Strongly preserved modules between cancer tissue and cell line contribute to drug resistance analysis across multiple cancer types. Genomics 2021; 113:1026-1036. [PMID: 33647440 DOI: 10.1016/j.ygeno.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
The existence and emergence of drug resistance in tumor cells is the main burden of cancer treatment. Most cancer drug resistance analyses are based entirely on cell line data and ignore the discordance between human tumors and cell lines, leading to biased preclinical model transformation. Based on cancer tissue data in TCGA and cancer cell line data in CCLE, this study identified and excluded non-preserved module (NP module) between cancer tissue and cell lines. We used strongly preserved module (SP module) for clinically relevant drug resistance analysis and identified 2068 "cancer-drug-module" pairs of 7 cancer types and 212 drugs based on data in GDSC. Furthermore, we identified potentially ineffective combination therapy (PICT) from multiple perspectives. Finally, we found 1608 sets of predictors that can predict drug response. These results provide insights and clues for the clinical selection of effective chemotherapy drugs to overcome cancer resistance in a new perspective.
Collapse
Affiliation(s)
- Siyao Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chengyan Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Baocui Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaochen Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
29
|
SLFN11 promotes CDT1 degradation by CUL4 in response to replicative DNA damage, while its absence leads to synthetic lethality with ATR/CHK1 inhibitors. Proc Natl Acad Sci U S A 2021; 118:2015654118. [PMID: 33536335 PMCID: PMC8017720 DOI: 10.1073/pnas.2015654118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Schlafen-11 (SLFN11) inactivation in ∼50% of cancer cells confers broad chemoresistance. To identify therapeutic targets and underlying molecular mechanisms for overcoming chemoresistance, we performed an unbiased genome-wide RNAi screen in SLFN11-WT and -knockout (KO) cells. We found that inactivation of Ataxia Telangiectasia- and Rad3-related (ATR), CHK1, BRCA2, and RPA1 overcome chemoresistance to camptothecin (CPT) in SLFN11-KO cells. Accordingly, we validate that clinical inhibitors of ATR (M4344 and M6620) and CHK1 (SRA737) resensitize SLFN11-KO cells to topotecan, indotecan, etoposide, cisplatin, and talazoparib. We uncover that ATR inhibition significantly increases mitotic defects along with increased CDT1 phosphorylation, which destabilizes kinetochore-microtubule attachments in SLFN11-KO cells. We also reveal a chemoresistance mechanism by which CDT1 degradation is retarded, eventually inducing replication reactivation under DNA damage in SLFN11-KO cells. In contrast, in SLFN11-expressing cells, SLFN11 promotes the degradation of CDT1 in response to CPT by binding to DDB1 of CUL4CDT2 E3 ubiquitin ligase associated with replication forks. We show that the C terminus and ATPase domain of SLFN11 are required for DDB1 binding and CDT1 degradation. Furthermore, we identify a therapy-relevant ATPase mutant (E669K) of the SLFN11 gene in human TCGA and show that the mutant contributes to chemoresistance and retarded CDT1 degradation. Taken together, our study reveals new chemotherapeutic insights on how targeting the ATR pathway overcomes chemoresistance of SLFN11-deficient cancers. It also demonstrates that SLFN11 irreversibly arrests replication by degrading CDT1 through the DDB1-CUL4CDT2 ubiquitin ligase.
Collapse
|
30
|
Lheureux S, Cristea MC, Bruce JP, Garg S, Cabanero M, Mantia-Smaldone G, Olawaiye AB, Ellard SL, Weberpals JI, Wahner Hendrickson AE, Fleming GF, Welch S, Dhani NC, Stockley T, Rath P, Karakasis K, Jones GN, Jenkins S, Rodriguez-Canales J, Tracy M, Tan Q, Bowering V, Udagani S, Wang L, Kunos CA, Chen E, Pugh TJ, Oza AM. Adavosertib plus gemcitabine for platinum-resistant or platinum-refractory recurrent ovarian cancer: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2021; 397:281-292. [PMID: 33485453 PMCID: PMC10792546 DOI: 10.1016/s0140-6736(20)32554-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The Wee1 (WEE1hu) inhibitor adavosertib and gemcitabine have shown preclinical synergy and promising activity in early phase clinical trials. We aimed to determine the efficacy of this combination in patients with ovarian cancer. METHODS In this double-blind, randomised, placebo-controlled, phase 2 trial, women with measurable recurrent platinum-resistant or platinum-refractory high-grade serous ovarian cancer were recruited from 11 academic centres in the USA and Canada. Women were eligible if they were aged 18 years or older, had an Eastern Cooperative Oncology Group performance status of 0-2, a life expectancy of more than 3 months, and normal organ and marrow function. Women with ovarian cancer of non-high-grade serous histology were eligible for enrolment in a non-randomised exploratory cohort. Eligible participants with high-grade serous ovarian cancer were randomly assigned (2:1), using block randomisation (block size of three and six) and no stratification, to receive intravenous gemcitabine (1000 mg/m2 on days 1, 8, and 15) with either oral adavosertib (175 mg) or identical placebo once daily on days 1, 2, 8, 9, 15, and 16, in 28-day cycles until disease progression or unacceptable toxicity. Patients and the team caring for each patient were masked to treatment assignment. The primary endpoint was progression-free survival. The safety and efficacy analysis population comprised all patients who received at least one dose of treatment. The trial is registered with ClinicalTrials.gov, NCT02151292, and is closed to accrual. FINDINGS Between Sept 22, 2014, and May 30, 2018, 124 women were enrolled, of whom 99 had high-grade serous ovarian cancer and were randomly assigned to adavosertib plus gemcitabine (65 [66%]) or placebo plus gemcitabine (34 [34%]). 25 women with non-high-grade serous ovarian cancer were enrolled in the exploratory cohort. After randomisation, five patients with high-grade serous ovarian cancer were found to be ineligible (four in the experimental group and one in the control group) and did not receive treatment. Median age for all treated patients (n=119) was 62 years (IQR 54-67). Progression-free survival was longer with adavosertib plus gemcitabine (median 4·6 months [95% CI 3·6-6·4] with adavosertib plus gemcitabine vs 3·0 months [1·8-3·8] with placebo plus gemcitabine; hazard ratio 0·55 [95% CI 0·35-0·90]; log-rank p=0·015). The most frequent grade 3 or worse adverse events were haematological (neutropenia in 38 [62%] of 61 participants in the adavosertib plus gemcitabine group vs ten [30%] of 33 in the placebo plus gemcitabine group; thrombocytopenia in 19 [31%] of 61 in the adavosertib plus gemcitabine group vs two [6%] of 33 in the placebo plus gemcitabine group). There were no treatment-related deaths; two patients (one in each group in the high-grade serous ovarian cancer cohort) died while on study medication (from sepsis in the experimental group and from disease progression in the control group). INTERPRETATION The observed clinical efficacy of a Wee1 inhibitor combined with gemcitabine supports ongoing assessment of DNA damage response drugs in high-grade serous ovarian cancer, a TP53-mutated tumour type with high replication stress. This therapeutic approach might be applicable to other tumour types with high replication stress; larger confirmatory studies are required. FUNDING US National Cancer Institute Cancer Therapy Evaluation Program, Ontario Institute for Cancer Research, US Department of Defense, Princess Margaret Cancer Foundation, and AstraZeneca.
Collapse
Affiliation(s)
| | | | | | - Swati Garg
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | - Prisni Rath
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Suzanne Jenkins
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Michael Tracy
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Qian Tan
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | | | - Lisa Wang
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Eric Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Amit M Oza
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
31
|
Waters T, Goss KL, Koppenhafer SL, Terry WW, Gordon DJ. Eltrombopag inhibits the proliferation of Ewing sarcoma cells via iron chelation and impaired DNA replication. BMC Cancer 2020; 20:1171. [PMID: 33256675 PMCID: PMC7706234 DOI: 10.1186/s12885-020-07668-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background The treatment of Ewing sarcoma, an aggressive bone and soft tissue sarcoma, is associated with suboptimal outcomes and significant side-effects. Consequently, there is an urgent need to identify novel therapies that will improve outcomes for children and adults with Ewing sarcoma tumors while also decreasing treatment-related toxicities. Methods We analyzed data from the PRISM drug repurposing screen, which tested the activity of 4518 drugs across 578 cancer cell lines, to identify drugs that selectively inhibit the growth of Ewing sarcoma cell lines. We then tested the effects of a top hit from the screen on cell proliferation, cell cycle progression, and activation of the DNA damage pathway using Ewing sarcoma cell lines. We also used a CRISPR/Cas9 gene knockout approach to investigate the role of Schlafen 11 (SLFN11), a restriction factor for DNA replication stress that is overexpressed in Ewing sarcoma tumors, in mediating the sensitivity of Ewing sarcoma cells to the drug. Results We found that eltrombopag, an FDA-approved thrombopoietin-receptor agonist (TPO-RA) that is currently being evaluated as a treatment for chemotherapy-induced thrombocytopenia, inhibits the growth of Ewing sarcoma cell lines in vitro in proliferation and colony formation assays. However, from a mechanistic standpoint, the thrombopoietin receptor is not expressed in Ewing sarcoma cells and we show that eltrombopag impairs DNA replication and causes DNA damage in Ewing sarcoma cells by chelating iron, a known “off-target” effect of the drug. We also found that the sensitivity of Ewing sarcoma cells to eltrombopag is mediated, in part, by SLFN11, which regulates the cellular response to DNA replication stress. Conclusions Ewing sarcoma cell lines are sensitive to eltrombopag and this drug could improve outcomes for patients with Ewing sarcoma tumors by both targeting the tumor, via chelation of iron and inhibition of DNA replication, and reducing chemotherapy-induced thrombocytopenia, via stimulation of the thrombopoietin receptor. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12885-020-07668-6.
Collapse
Affiliation(s)
- Torin Waters
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA
| | - Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA
| | - Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA.
| |
Collapse
|