1
|
Salahuddin H, Waters-Rist AL, Longstaffe FJ. Amino acid stable carbon isotopes in nail keratin illuminate breastfeeding and weaning practices of mother - infant dyads. Amino Acids 2025; 57:13. [PMID: 39883182 PMCID: PMC11782432 DOI: 10.1007/s00726-024-03425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/29/2024] [Indexed: 01/31/2025]
Abstract
Compound-specific stable carbon isotope analysis of amino acids (CSIA-AA) is widely used in ecological studies to analyze food-webs and is gaining use in archaeology for investigating past diets. However, its use in reconstructing breastfeeding and weaning practices is not fully understood. This study evaluates the efficacy of stable carbon isotope analysis of amino acids in early life diet reconstruction by analyzing keratin from fingernail samples of three mother-infant pairs during late gestation and early postpartum periods. Our results show that stable carbon isotope ratios (δ13C) of glycine, and to a lesser extent glutamate, effectively trace the onset of exclusive breastfeeding and the end of weaning in infants. We propose that glycine's 'conditionally essential' metabolic pathway during infancy allows it to reflect maternal glycine δ13C, indicating breastmilk consumption. Subtle changes in glutamate δ13C likely result from its 'non-essential' status. Additionally, δ13C values of glycine and glutamate indicate maternal physiological and pathological stress due to catabolic effects such as gluconeogenesis. These findings have significant implications for ecological and archaeological research using CSIA-AA for dietary reconstructions. They highlight the need to understand how metabolic pathways affecting δ13C of amino acids may change over an individual's lifespan or be altered due to various forms of stress.
Collapse
|
2
|
Shuvalov O, Kirdeeva Y, Fefilova E, Daks A, Fedorova O, Parfenyev S, Nazarov A, Vlasova Y, Krasnov GS, Barlev NA. 20-Hydroxyecdysone Boosts Energy Production and Biosynthetic Processes in Non-Transformed Mouse Cells. Antioxidants (Basel) 2024; 13:1349. [PMID: 39594491 PMCID: PMC11591052 DOI: 10.3390/antiox13111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
20-Hydroxyecdysone (20E) is an arthropod steroid hormone that possesses a number of beneficial pharmacological activities in humans, including anabolic, antioxidant, hypoglycemic, cardioprotective, hepatoprotective, neuroprotective, and antineoplastic properties, etc. While several studies have explored the anabolic activity of 20E in muscle cells, they have concentrated on its effects on myofibril size, protein biosynthesis intensity, and myostatin expression, without assessing energy metabolism. In this research, we have demonstrated that 20E boosts both catabolism and anabolism, coupling energy-producing and biosynthetic metabolic processes in mouse myoblasts and fibroblasts in the same way. Using a transcriptomic approach, we identified the 20E-mediated up-regulation of genes involved in different metabolic processes. Further experiments revealed that 20E increased the levels of enzymes involved in glycolysis and one-carbon metabolism. It also increased the uptake of glucose, glycolysis, respiration, the production of ATP, and global protein biosynthesis in mouse myoblasts and fibroblasts. This phenomenon involves the PI3K/AKT/mTOR signaling pathway. Taken together, the observed 20E-dependent upregulation of energy metabolism may be the main reason for 20E's well-known anabolic activity.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Elizaveta Fefilova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Alexander Nazarov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Yulia Vlasova
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia;
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Nick A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
3
|
Robinson AL, Elliott Smith EA, Besser AC, Newsome SD. Tissue-specific carbon isotope patterns of amino acids in southern sea otters. Oecologia 2024; 204:13-24. [PMID: 38227253 DOI: 10.1007/s00442-023-05505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
The measurement of stable isotope values of individual compounds, such as amino acids (AAs), has become a powerful tool in animal ecology and ecophysiology. As with any emerging technique, questions remain regarding the capabilities and limitations of this approach, including how metabolism and tissue synthesis impact the isotopic values of individual AAs and subsequent multivariate patterns. We measured carbon isotope (δ13C) values of essential (AAESS) and nonessential (AANESS) AAs in bone collagen, whisker, muscle, and liver from ten southern sea otters (Enhydra lutris nereis) that stranded in Monterey Bay, California. Sea otters in this population exhibit high degrees of individual dietary specialization, making this an excellent dataset to explore differences in AA δ13C values among tissues in a wild population. We found the δ13C values of the AANESS glutamic acid, proline, serine, and glycine and the AAESS threonine differed significantly among tissues, indicating possible isotopic discrimination during tissue synthesis. Threonine δ13C values were higher in liver relative to bone collagen and muscle, which may indicate catabolism of threonine for gluconeogenesis, an interpretation further supported by correlations between the δ13C values of threonine and its gluconeogenic products glycine and serine in liver. This intraindividual isotopic variation yielded different ecological interpretations among tissues; for 6/10 of the sea otter individuals analyzed, at least one tissue indicated reliance on a different primary producer source than the other tissues. Our results highlight the importance of gluconeogenesis in a carnivorous marine mammal and indicate that metabolic processes influence AAESS and AANESS δ13C values and multivariate AA δ13C patterns.
Collapse
Affiliation(s)
- Alana L Robinson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Emma A Elliott Smith
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Alexi C Besser
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
4
|
Fry B, Carter JF, O'Mara K. Fingerprinting eukaryotic metabolism across the animal kingdom using position-specific isotope analysis (PSIA) 13C/ 12C measurements. SCIENCE ADVANCES 2023; 9:eadg1549. [PMID: 37406114 DOI: 10.1126/sciadv.adg1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Despite differences in their overall metabolism, eukaryotes share a common mitochondrial biochemistry. We investigated how this fundamental biochemistry supports overall metabolism using a high-resolution carbon isotope approach, position-specific isotope analysis. We measured carbon isotope 13C/12C cycling in animals, focusing on amino acids that are formed in mitochondrial reactions and are most metabolically active. Carboxyl isotope determinations for amino acids showed strong signals related to common biochemical pathways. Contrasting isotope patterns were measured for metabolism associated with major life history patterns, including growth and reproduction. Turnover of proteins and lipids as well as gluoconeogensis dynamics could be estimated for these metabolic life histories. The high-resolution isotomics measurements fingerprinted metabolism and metabolic strategies across the eukaryotic animal kingdom, yielding results for humans, ungulates, whales, and diverse fish and invertebrates in a nearshore marine food web.
Collapse
Affiliation(s)
- Brian Fry
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - James F Carter
- Queensland Health, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - Kaitlyn O'Mara
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
5
|
Wilkes EB, Sessions AL, Zeichner SS, Dallas B, Schubert B, Jahren AH, Eiler JM. Position-specific carbon isotope analysis of serine by gas chromatography/Orbitrap mass spectrometry, and an application to plant metabolism. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9347. [PMID: 35770334 DOI: 10.1002/rcm.9347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Position-specific 13 C/12 C ratios within amino acids remain largely unexplored in environmental samples due to methodological limitations. We hypothesized that natural-abundance isotope patterns in serine may serve as a proxy for plant metabolic fluxes including photorespiration. Here we describe an Orbitrap method optimized for the position-specific carbon isotope analysis of serine to test our hypothesis and discuss the generalizability of this method to other amino acids. METHODS Position-specific carbon isotope ratios of serine were measured using a Thermo Scientific™ Q Exactive™ GC Orbitrap™. Amino acids were hydrolyzed from Arabidopsis biomass, purified from potential matrix interferences, and derivatized alongside standards. Derivatized serine (N,O-bis(trifluoroacetyl)methyl ester) was isolated using gas chromatography, trapped in a reservoir, and purged into the electron ionization source over tens of minutes, producing fragment ions containing different combinations of atoms from the serine-derivative molecule. The 13 C/12 C ratios of fragments with monoisotopic masses of 110.0217, 138.0166, and 165.0037 Da were monitored in the mass analyzer and used to calculate position-specific δ13 C values relative to a working standard. RESULTS This methodology constrains position-specific δ13 C values for nanomole amounts of serine isolated from chemically complex mixtures. The δ13 C values of fragment ions of serine were characterized with ≤1‰ precisions, leading to propagated standard errors of 0.7-5‰ for each carbon position. Position-specific δ13 C values differed by up to ca 28 ± 5‰ between serine molecules hydrolyzed from plants grown under contrasting pCO2 , selected to promote different fluxes through photosynthesis and photorespiration. The method was validated using pure serine standards characterized offline. CONCLUSIONS This study presents the first Orbitrap-based measurements of natural-abundance, position-specific carbon isotope variation in an amino acid isolated from a biological matrix. We present a method for the precise characterization of isotope ratios in serine and propose applications probing metabolism in plants. We discuss the potential for extending these approaches to other amino acids, paving the way for novel applications.
Collapse
Affiliation(s)
- Elise B Wilkes
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA
| | - Alex L Sessions
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA
| | - Sarah S Zeichner
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA
| | - Brooke Dallas
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA
| | - Brian Schubert
- School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - A Hope Jahren
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - John M Eiler
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA
| |
Collapse
|
6
|
Yun HY, Larsen T, Choi B, Won E, Shin K. Amino acid nitrogen and carbon isotope data: Potential and implications for ecological studies. Ecol Evol 2022; 12:e8929. [PMID: 35784034 PMCID: PMC9163675 DOI: 10.1002/ece3.8929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Explaining food web dynamics, stability, and functioning depend substantially on understanding of feeding relations within a community. Bulk stable isotope ratios (SIRs) in natural abundance are well-established tools to express direct and indirect feeding relations as continuous variables across time and space. Along with bulk SIRs, the SIRs of individual amino acids (AAs) are now emerging as a promising and complementary method to characterize the flow and transformation of resources across a diversity of organisms, from microbial domains to macroscopic consumers. This significant AA-SIR capacity is based on empirical evidence that a consumer's SIR, specific to an individual AA, reflects its diet SIR coupled with a certain degree of isotopic differences between the consumer and its diet. However, many empirical ecologists are still unfamiliar with the scope of applicability and the interpretative power of AA-SIR. To fill these knowledge gaps, we here describe a comprehensive approach to both carbon and nitrogen AA-SIR assessment focusing on two key topics: pattern in AA-isotope composition across spatial and temporal scales, and a certain variability of AA-specific isotope differences between the diet and the consumer. On this basis we review the versatile applicability of AA-SIR to improve our understanding of physiological processes as well as food web functioning, allowing us to reconstruct dominant basal dietary sources and trace their trophic transfers at the specimen and community levels. Given the insightful and opportunities of AA-SIR, we suggest future applications for the dual use of carbon and nitrogen AA-SIR to study more realistic food web structures and robust consumer niches, which are often very difficult to explain in nature.
Collapse
Affiliation(s)
- Hee Young Yun
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Thomas Larsen
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
| | - Bohyung Choi
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
- Inland Fisheries Research InstituteNational Institute of Fisheries ScienceGeumsan‐gunKorea
| | - Eun‐Ji Won
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Kyung‐Hoon Shin
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| |
Collapse
|
7
|
Abstract
Stable isotope analysis of teeth and bones is regularly applied by archeologists and paleoanthropologists seeking to reconstruct diets, ecologies, and environments of past hominin populations. Moving beyond the now prevalent study of stable isotope ratios from bulk materials, researchers are increasingly turning to stable isotope ratios of individual amino acids to obtain more detailed and robust insights into trophic level and resource use. In the present article, we provide a guide on how to best use amino acid stable isotope ratios to determine hominin dietary behaviors and ecologies, past and present. We highlight existing uncertainties of interpretation and the methodological developments required to ensure good practice. In doing so, we hope to make this promising approach more broadly accessible to researchers at a variety of career stages and from a variety of methodological and academic backgrounds who seek to delve into new depths in the study of dietary composition.
Collapse
Affiliation(s)
| | - Ricardo Fernandes
- University of Oxford, Oxford, England, United Kingdom, and with the Faculty of Arts at Masaryk University, Czech Republic
| | - Yiming V Wang
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Patrick Roberts
- School of Social Sciences, University of Queensland, in St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Senevirathna JDM, Asakawa S. Multi-Omics Approaches and Radiation on Lipid Metabolism in Toothed Whales. Life (Basel) 2021; 11:364. [PMID: 33923876 PMCID: PMC8074237 DOI: 10.3390/life11040364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid synthesis pathways of toothed whales have evolved since their movement from the terrestrial to marine environment. The synthesis and function of these endogenous lipids and affecting factors are still little understood. In this review, we focused on different omics approaches and techniques to investigate lipid metabolism and radiation impacts on lipids in toothed whales. The selected literature was screened, and capacities, possibilities, and future approaches for identifying unusual lipid synthesis pathways by omics were evaluated. Omics approaches were categorized into the four major disciplines: lipidomics, transcriptomics, genomics, and proteomics. Genomics and transcriptomics can together identify genes related to unique lipid synthesis. As lipids interact with proteins in the animal body, lipidomics, and proteomics can correlate by creating lipid-binding proteome maps to elucidate metabolism pathways. In lipidomics studies, recent mass spectroscopic methods can address lipid profiles; however, the determination of structures of lipids are challenging. As an environmental stress, the acoustic radiation has a significant effect on the alteration of lipid profiles. Radiation studies in different omics approaches revealed the necessity of multi-omics applications. This review concluded that a combination of many of the omics areas may elucidate the metabolism of lipids and possible hazards on lipids in toothed whales by radiation.
Collapse
Affiliation(s)
- Jayan D. M. Senevirathna
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
9
|
Sun Y, Ishikawa NF, Ogawa NO, Kawahata H, Takano Y, Ohkouchi N. A method for stable carbon isotope measurement of underivatized individual amino acids by multi-dimensional high-performance liquid chromatography and elemental analyzer/isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8885. [PMID: 32656862 DOI: 10.1002/rcm.8885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE To achieve better precision and accuracy for δ13 C analysis of individual amino acids (AAs), we have developed a new analytical method based on multi-dimensional high-performance liquid chromatography (HPLC) and elemental analyzer/isotope ratio mass spectrometry (EA/IRMS). Unlike conventional methods using gas chromatography, this approach omits pre-column chemical derivatization, thus reducing systematic errors associated with the isotopic measurement. METHODS The separation and isolation of individual AAs in a standard mixture containing 15 AAs and a biological sample, spear squid (Heterololigo bleekeri) were performed. AAs were isolated using an HPLC system equipped with a reversed-phase column and a mixed-mode column and collected using a fraction collector. After the chromatographic separation and further post-HPLC purification, the δ13 C values of AAs were measured by EA/IRMS. RESULTS The complete isolation of all 15 AAs in the standard mixture was achieved. The δ13 C values of these AAs before and after the experiment were in good agreement. Also, 15 AAs in the biological sample, H. bleekeri, were successfully measured. The δ13 C values of AAs in H. bleekeri varied by as much as 30‰ with glycine being most enriched in13 C. CONCLUSIONS The consistency between the δ13 C values of reference and processed AAs demonstrates that the experimental procedure generates accurate δ13 C values unaffected by fractionation effects and contamination. This method is therefore suitable for δ13 C analysis of biological samples with higher precision than conventional approaches. We propose this new method as a tool to measure δ13 C values of AAs in biological, ecological and biogeochemical studies.
Collapse
Affiliation(s)
- Yuchen Sun
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Japan
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Naoto F Ishikawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hodaka Kawahata
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Japan
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
10
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
11
|
Criscitiello MF, Kraev I, Lange S. Post-Translational Protein Deimination Signatures in Serum and Serum-Extracellular Vesicles of Bos taurus Reveal Immune, Anti-Pathogenic, Anti-Viral, Metabolic and Cancer-Related Pathways for Deimination. Int J Mol Sci 2020; 21:E2861. [PMID: 32325910 PMCID: PMC7215346 DOI: 10.3390/ijms21082861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70-500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein-protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein-Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
12
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|