1
|
Paluchowska P, Lim Rossmann S, Lysøe E, Janiszewska M, Michalak K, Heydarnajad Giglou R, Torabi Giglou M, Brurberg MB, Śliwka J, Yin Z. Diversity of the Ry sto gene conferring resistance to potato virus Y in wild relatives of potato. BMC PLANT BIOLOGY 2024; 24:375. [PMID: 38714928 PMCID: PMC11077776 DOI: 10.1186/s12870-024-05089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Potato virus Y (PVY) is among the economically most damaging viral pathogen in production of potato (Solanum tuberosum) worldwide. The gene Rysto derived from the wild potato relative Solanum stoloniferum confers extreme resistance to PVY. RESULTS The presence and diversity of Rysto were investigated in wild relatives of potato (298 genotypes representing 29 accessions of 26 tuber-bearing Solanum species) using PacBio amplicon sequencing. A total of 55 unique Rysto-like sequences were identified in 72 genotypes representing 12 accessions of 10 Solanum species and six resistant controls (potato cultivars Alicja, Bzura, Hinga, Nimfy, White Lady and breeding line PW363). The 55 Rysto-like sequences showed 89.87 to 99.98% nucleotide identity to the Rysto reference gene, and these encoded in total 45 unique protein sequences. While Rysto-like26 identified in Alicja, Bzura, White Lady and Rysto-like16 in PW363 encode a protein identical to the Rysto reference, the remaining 44 predicted Rysto-like proteins were 65.93 to 99.92% identical to the reference. Higher levels of diversity of the Rysto-like sequences were found in the wild relatives of potato than in the resistant control cultivars. The TIR and NB-ARC domains were the most conserved within the Rysto-like proteins, while the LRR and C-JID domains were more variable. Several Solanum species, including S. antipoviczii and S. hougasii, showed resistance to PVY. This study demonstrated Hyoscyamus niger, a Solanaceae species distantly related to Solanum, as a host of PVY. CONCLUSIONS The new Rysto-like variants and the identified PVY resistant potato genotypes are potential resistance sources against PVY in potato breeding. Identification of H. niger as a host for PVY is important for cultivation of this plant, studies on the PVY management, its ecology, and migrations. The amplicon sequencing based on PacBio SMRT and the following data analysis pipeline described in our work may be applied to obtain the nucleotide sequences and analyze any full-length genes from any, even polyploid, organisms.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB) in Radzików, Młochów Division, Platanowa St. 19, Młochów, 05-831, Poland
| | - Simeon Lim Rossmann
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Marta Janiszewska
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB) in Radzików, Młochów Division, Platanowa St. 19, Młochów, 05-831, Poland
| | - Krystyna Michalak
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB) in Radzików, Młochów Division, Platanowa St. 19, Młochów, 05-831, Poland
| | - Rasoul Heydarnajad Giglou
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Mousa Torabi Giglou
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - May Bente Brurberg
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB) in Radzików, Młochów Division, Platanowa St. 19, Młochów, 05-831, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB) in Radzików, Młochów Division, Platanowa St. 19, Młochów, 05-831, Poland.
| |
Collapse
|
2
|
Majumdar A, Sharma A, Belludi R. Natural and Engineered Resistance Mechanisms in Plants against Phytoviruses. Pathogens 2023; 12:619. [PMID: 37111505 PMCID: PMC10143959 DOI: 10.3390/pathogens12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Plant viruses, as obligate intracellular parasites, rely exclusively on host machinery to complete their life cycle. Whether a virus is pathogenic or not depends on the balance between the mechanisms used by both plants and viruses during the intense encounter. Antiviral defence mechanisms in plants can be of two types, i.e., natural resistance and engineered resistance. Innate immunity, RNA silencing, translational repression, autophagy-mediated degradation, and resistance to virus movement are the possible natural defence mechanisms against viruses in plants, whereas engineered resistance includes pathogen-derived resistance along with gene editing technologies. The incorporation of various resistance genes through breeding programmes, along with gene editing tools such as CRISPR/Cas technologies, holds great promise in developing virus-resistant plants. In this review, different resistance mechanisms against viruses in plants along with reported resistance genes in major vegetable crops are discussed.
Collapse
Affiliation(s)
- Anik Majumdar
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| | - Abhishek Sharma
- Department of Vegetable Science, College of Horticulture and Forestry, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Rakesh Belludi
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| |
Collapse
|
3
|
Transcriptome and Small RNA Profiling of Potato Virus Y Infected Potato Cultivars, Including Systemically Infected Russet Burbank. Viruses 2022; 14:v14030523. [PMID: 35336930 PMCID: PMC8952017 DOI: 10.3390/v14030523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Potatoes are the world’s most produced non-grain crops and an important food source for billions of people. Potatoes are susceptible to numerous pathogens that reduce yield, including Potato virus Y (PVY). Genetic resistance to PVY is a sustainable way to limit yield and quality losses due to PVY infection. Potato cultivars vary in their susceptibility to PVY and include susceptible varieties such as Russet Burbank, and resistant varieties such as Payette Russet. Although the loci and genes associated with PVY-resistance have been identified, the genes and mechanisms involved in limiting PVY during the development of systemic infections have yet to be fully elucidated. To increase our understanding of PVY infection, potato antiviral responses, and resistance, we utilized RNA sequencing to characterize the transcriptomes of two potato cultivars. Since transcriptional responses associated with the extreme resistance response occur soon after PVY contact, we analyzed the transcriptome and small RNA profile of both the PVY-resistant Payette Russet cultivar and PVY-susceptible Russet Burbank cultivar 24 h post-inoculation. While hundreds of genes, including terpene synthase and protein kinase encoding genes, exhibited increased expression, the majority, including numerous genes involved in plant pathogen interactions, were downregulated. To gain greater understanding of the transcriptional changes that occur during the development of systemic PVY-infection, we analyzed Russet Burbank leaf samples one week and four weeks post-inoculation and identified similarities and differences, including higher expression of genes involved in chloroplast function, photosynthesis, and secondary metabolite production, and lower expression of defense response genes at those time points. Small RNA sequencing identified different populations of 21- and 24-nucleotide RNAs and revealed that the miRNA profiles in PVY-infected Russet Burbank plants were similar to those observed in other PVY-tolerant cultivars and that during systemic infection ~32% of the NLR-type disease resistance genes were targeted by 21-nt small RNAs. Analysis of alternative splicing in PVY-infected potato plants identified splice variants of several hundred genes, including isoforms that were more dominant in PVY-infected plants. The description of the PVYN-Wi-associated transcriptome and small RNA profiles of two potato cultivars described herein adds to the body of knowledge regarding differential outcomes of infection for specific PVY strain and host cultivar pairs, which will help further understanding of the mechanisms governing genetic resistance and/or virus-limiting responses in potato plants.
Collapse
|