1
|
Branska B, Koppova K, Husakova M, Patakova P. Application of fed-batch strategy to fully eliminate the negative effect of lignocellulose-derived inhibitors in ABE fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:87. [PMID: 38915101 PMCID: PMC11197323 DOI: 10.1186/s13068-024-02520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Inhibitors that are released from lignocellulose biomass during its treatment represent one of the major bottlenecks hindering its massive utilization in the biotechnological production of chemicals. This study demonstrates that negative effect of inhibitors can be mitigated by proper feeding strategy. Both, crude undetoxified lignocellulose hydrolysate and complex medium supplemented with corresponding inhibitors were tested in acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii NRRL B-598 as the producer strain. RESULTS First, it was found that the sensitivity of C. beijerinckii to inhibitors varied with different growth stages, being the most significant during the early acidogenic phase and less pronounced during late acidogenesis and early solventogenesis. Thus, a fed-batch regime with three feeding schemes was tested for toxic hydrolysate (no growth in batch mode was observed). The best results were obtained when the feeding of an otherwise toxic hydrolysate was initiated close to the metabolic switch, resulting in stable and high ABE production. Complete utilization of glucose, and up to 88% of xylose, were obtained. The most abundant inhibitors present in the alkaline wheat straw hydrolysate were ferulic and coumaric acids; both phenolic acids were efficiently detoxified by the intrinsic metabolic activity of clostridia during the early stages of cultivation as well as during the feeding period, thus preventing their accumulation. Finally, the best feeding strategy was verified using a TYA culture medium supplemented with both inhibitors, resulting in 500% increase in butanol titer over control batch cultivation in which inhibitors were added prior to inoculation. CONCLUSION Properly timed sequential feeding effectively prevented acid-crash and enabled utilization of otherwise toxic substrate. This study unequivocally demonstrates that an appropriate biotechnological process control strategy can fully eliminate the negative effects of lignocellulose-derived inhibitors.
Collapse
Affiliation(s)
- Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| | - Kamila Koppova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Marketa Husakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| |
Collapse
|
2
|
Gong Y, Wang R, Ma L, Wang S, Li C, Xu Q. Optimization of trans-4-hydroxyproline synthesis pathway by rearrangement center carbon metabolism in Escherichia coli. Microb Cell Fact 2023; 22:240. [PMID: 37986164 PMCID: PMC10659092 DOI: 10.1186/s12934-023-02236-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND trans-4-Hydroxyproline (T-4-HYP) is a promising intermediate in the synthesis of antibiotic drugs. However, its industrial production remains challenging due to the low production efficiency of T-4-HYP. This study focused on designing the key nodes of anabolic pathway to enhance carbon flux and minimize carbon loss, thereby maximizing the production potential of microbial cell factories. RESULTS First, a basic strain, HYP-1, was developed by releasing feedback inhibitors and expressing heterologous genes for the production of trans-4-hydroxyproline. Subsequently, the biosynthetic pathway was strengthened while branching pathways were disrupted, resulting in increased metabolic flow of α-ketoglutarate in the Tricarboxylic acid cycle. The introduction of the NOG (non-oxidative glycolysis) pathway rearranged the central carbon metabolism, redirecting glucose towards acetyl-CoA. Furthermore, the supply of NADPH was enhanced to improve the acid production capacity of the strain. Finally, the fermentation process of T-4-HYP was optimized using a continuous feeding method. The rate of sugar supplementation controlled the dissolved oxygen concentrations during fermentation, and Fe2+ was continuously fed to supplement the reduced iron for hydroxylation. These modifications ensured an effective supply of proline hydroxylase cofactors (O2 and Fe2+), enabling efficient production of T-4-HYP in the microbial cell factory system. The strain HYP-10 produced 89.4 g/L of T-4-HYP in a 5 L fermenter, with a total yield of 0.34 g/g, the highest values reported by microbial fermentation, the yield increased by 63.1% compared with the highest existing reported yield. CONCLUSION This study presents a strategy for establishing a microbial cell factory capable of producing T-4-HYP at high levels, making it suitable for large-scale industrial production. Additionally, this study provides valuable insights into regulating synthesis of other compounds with α-ketoglutaric acid as precursor.
Collapse
Affiliation(s)
- Yu Gong
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Ruiqi Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Ling Ma
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Shuo Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Changgeng Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
3
|
Chen L, Wang C, Su J. Understanding the Effect of Different Glucose Concentrations in the Oligotrophic Bacterium Bacillus subtilis BS-G1 through Transcriptomics Analysis. Microorganisms 2023; 11:2401. [PMID: 37894061 PMCID: PMC10609351 DOI: 10.3390/microorganisms11102401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Glucose is an important carbon source for microbial growth, and its content in infertile soils is essential for the growth of bacteria. Since the mechanism of oligotrophic bacterium adaptation in barren soils is unclear, this research employed RNA-seq technology to examine the impact of glucose concentration on the oligotrophic bacterium B. subtilis BS-G1 in soil affected by desertification. A global transcriptome analysis (RNA-Seq) revealed that the significantly differentially expressed genes (DEGs) histidine metabolism, glutamate synthesis, the HIF-1 signaling pathway, sporulation, and the TCA cycle pathway of B. subtilis BS-G1 were significantly enriched with a 0.015 g/L glucose concentration (L group), compared to a 10 g/L glucose concentration (H group). The DEGs amino acid system, two-component system, metal ion transport, and nitrogen metabolism system of B. subtilis BS-G1 were significantly enriched in the 5 g/L glucose concentration (M group), compared with the H group. In addition, the present study identified the regulation pattern and key genes under a low-glucose environment (7 mRNAs and 16 sRNAs). This study primarily investigates the variances in the regulatory pathways of the oligotrophic B. subtilis BS-G1, which holds substantial importance in comprehending the mechanism underlying the limited sugar tolerance of oligotrophic bacteria.
Collapse
Affiliation(s)
- Liping Chen
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Chenglong Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jianyu Su
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
4
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, Sedlar K. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv 2021; 58:107889. [PMID: 34929313 DOI: 10.1016/j.biotechadv.2021.107889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Solventogenic clostridia are not a strictly defined group within the genus Clostridium but its representatives share some common features, i.e. they are anaerobic, non-pathogenic, non-toxinogenic and endospore forming bacteria. Their main metabolite is typically 1-butanol but depending on species and culture conditions, they can form other metabolites such as acetone, isopropanol, ethanol, butyric, lactic and acetic acids, and hydrogen. Although these organisms were previously used for the industrial production of solvents, they later fell into disuse, being replaced by more efficient chemical production. A return to a more biological production of solvents therefore requires a thorough understanding of clostridial metabolism. Transcriptome analysis, which reflects the involvement of individual genes in all cellular processes within a population, at any given (sampling) moment, is a valuable tool for gaining a deeper insight into clostridial life. In this review, we describe techniques to study transcription, summarize the evolution of these techniques and compare methods for data processing and visualization of solventogenic clostridia, particularly the species Clostridium acetobutylicum and Clostridium beijerinckii. Individual approaches for evaluating transcriptomic data are compared and their contributions to advancements in the field are assessed. Moreover, utilization of transcriptomic data for reconstruction of computational clostridial metabolic models is considered and particular models are described. Transcriptional changes in glucose transport, central carbon metabolism, the sporulation cycle, butanol and butyrate stress responses, the influence of lignocellulose-derived inhibitors on growth and solvent production, and other respective topics, are addressed and common trends are highlighted.
Collapse
Affiliation(s)
- Petra Patakova
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Barbora Branska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Maryna Vasylkivska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | | | - Jana Musilova
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Ivo Provaznik
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Karel Sedlar
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| |
Collapse
|
6
|
Arizzi M, Morra S, Gilardi G, Pugliese M, Gullino ML, Valetti F. Improving sustainable hydrogen production from green waste: [FeFe]-hydrogenases quantitative gene expression RT-qPCR analysis in presence of autochthonous consortia. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:182. [PMID: 34530890 PMCID: PMC8444407 DOI: 10.1186/s13068-021-02028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/28/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Bio-hydrogen production via dark fermentation of low-value waste is a potent and simple mean of recovering energy, maximising the harvesting of reducing equivalents to produce the cleanest fuel amongst renewables. Following several position papers from companies and public bodies, the hydrogen economy is regaining interest, especially in combination with circular economy and the environmental benefits of short local supply chains, aiming at zero net emission of greenhouse gases (GHG). The biomasses attracting the largest interest are agricultural and urban green wastes (pruning of trees, collected leaves, grass clippings from public parks and boulevards), which are usually employed in compost production, with some concerns over the GHG emission during the process. Here, an alternative application of green wastes, low-value compost and intermediate products (partially composted but unsuitable for completing the process) is studied, pointing at the autochthonous microbial consortium as an already selected source of implementation for biomass degradation and hydrogen production. The biocatalysts investigated as mainly relevant for hydrogen production were the [FeFe]-hydrogenases expressed in Clostridia, given their very high turnover rates. RESULTS Bio-hydrogen accumulation was related to the modulation of gene expression of multiple [FeFe]-hydrogenases from two strains (Clostridium beijerinckii AM2 and Clostridium tyrobutyricum AM6) isolated from the same waste. Reverse Transcriptase quantitative PCR (RT-qPCR) was applied over a period of 288 h and the RT-qPCR results showed that C. beijerinckii AM2 prevailed over C. tyrobutyricum AM6 and a high expression modulation of the 6 different [FeFe]-hydrogenase genes of C. beijerinckii in the first 23 h was observed, sustaining cumulative hydrogen production of 0.6 to 1.2 ml H2/g VS (volatile solids). These results are promising in terms of hydrogen yields, given that no pre-treatment was applied, and suggested a complex cellular regulation, linking the performance of dark fermentation with key functional genes involved in bio-H2 production in presence of the autochthonous consortium, with different roles, time, and mode of expression of the involved hydrogenases. CONCLUSIONS An applicative outcome of the hydrogenases genes quantitative expression analysis can be foreseen in optimising (on the basis of the acquired functional data) hydrogen production from a nutrient-poor green waste and/or low added value compost, in a perspective of circular bioeconomy.
Collapse
Affiliation(s)
- M Arizzi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Acea Engineering Laboratories Research Innovation SpA, Roma, Italy
| | - S Morra
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - G Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - M Pugliese
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - M L Gullino
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - F Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
7
|
Du R, Li C, Pan P, Sze Ki Lin C, Yan J. Characterization and evaluation of a natural derived bacterial consortium for efficient lignocellulosic biomass valorization. BIORESOURCE TECHNOLOGY 2021; 329:124909. [PMID: 33684842 DOI: 10.1016/j.biortech.2021.124909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Abstract
A consortium (HPP) with improved ability in biomass conversion was achieved by adjusting the proportion of Pseudoxanthomonas taiwanensis in a natural consortium (HP), but the mechanism behind was unknown. Herein, the diversities of microbial community structure and gene functions of the consortia were analyzed first, and found that HPP had a more balanced microbial structure with enriched gene pathways related to cellular processes, environmental information processing and metabolism. Then, key genes responsible for biomass conversion were further analyzed, finding that their abundance and distribution contributed to HPP's efficient biomass conversion. Finally, consolidated bioprocessing of agricultural wastes by HPP was carried out to verify its enhanced ability, and ethanol with the highest yield that was ever reported was achieved at 0.28 g/g. This is the first study which reported the underlying mechanisms for synergistic effects of microbial consortia, and will guide the artificial construction of complex microbial consortium for specific purpose.
Collapse
Affiliation(s)
- Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peipei Pan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
8
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
9
|
Jureckova K, Raschmanova H, Kolek J, Vasylkivska M, Branska B, Patakova P, Provaznik I, Sedlar K. Identification and Validation of Reference Genes in Clostridium beijerinckii NRRL B-598 for RT-qPCR Using RNA-Seq Data. Front Microbiol 2021; 12:640054. [PMID: 33815328 PMCID: PMC8012504 DOI: 10.3389/fmicb.2021.640054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Gene expression analysis through reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) depends on correct data normalization by reference genes with stable expression. Although Clostridium beijerinckii NRRL B-598 is a promising Gram-positive bacterium for the industrial production of biobutanol, validated reference genes have not yet been reported. In this study, we selected 160 genes with stable expression based on an RNA sequencing (RNA-Seq) data analysis, and among them, seven genes (zmp, rpoB1, rsmB, greA, rpoB2, topB2, and rimO) were selected for experimental validation by RT-qPCR and gene ontology (GO) enrichment analysis. According to statistical analyses, zmp and greA were the most stable and suitable reference genes for RT-qPCR normalization. Furthermore, our methodology can be useful for selection of the reference genes in other strains of C. beijerinckii and it also suggests that the RNA-Seq data can be used for the initial selection of novel reference genes, however, their validation is required.
Collapse
Affiliation(s)
- Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Hana Raschmanova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| |
Collapse
|
10
|
Gao Y, Zhou X, Zhang MM, Liu YJ, Guo XP, Lei CR, Li WJ, Lu D. Response characteristics of the membrane integrity and physiological activities of the mutant strain Y217 under exogenous butanol stress. Appl Microbiol Biotechnol 2021; 105:2455-2472. [PMID: 33606076 DOI: 10.1007/s00253-021-11174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023]
Abstract
Butanol inhibits bacterial activity by destroying the cell membrane of Clostridium acetobutylicum strains and altering functionality. Butanol toxicity also results in destruction of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS), thereby preventing glucose transport and phosphorylation and inhibiting transmembrane transport and assimilation of sugars, amino acids, and other nutrients. In this study, based on the addition of exogenous butanol, the tangible macro indicators of changes in the carbon ion beam irradiation-mutant Y217 morphology were observed using scanning electron microscopy (SEM). The mutant has lower microbial adhesion to hydrocarbon (MATH) value than C. acetobutylicum ATCC 824 strain. FDA fluorescence intensity and conductivity studies demonstrated the intrinsically low membrane permeability of the mutant membrane, with membrane potential remaining relatively stable. Monounsaturated FAs (MUFAs) accounted for 35.17% of the mutant membrane, and the saturated fatty acids (SFA)/unsaturated fatty acids (UFA) ratio in the mutant cell membrane was 1.65. In addition, we conducted DNA-level analysis of the mutant strain Y217. Expectedly, through screening, we found gene mutant sites encoding membrane-related functions in the mutant, including ATP-binding cassette (ABC) transporter-related genes, predicted membrane proteins, and the PTS transport system. It is noteworthy that an unreported predicted membrane protein (CAC 3309) may be related to changes in mutant cell membrane properties. KEY POINTS: • Mutant Y217 exhibited better membrane integrity and permeability. • Mutant Y217 was more resistant to butanol toxicity. • Some membrane-related genes of mutant Y217 were mutated.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China
| | - Ya-Jun Liu
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xiao-Peng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Wen-Jian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China. .,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China.
| |
Collapse
|
11
|
Patakova P, Kolek J, Jureckova K, Branska B, Sedlar K, Vasylkivska M, Provaznik I. Deeper below the surface-transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock. Microbiologyopen 2020; 10:e1146. [PMID: 33319506 PMCID: PMC7884928 DOI: 10.1002/mbo3.1146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
The main bottleneck in the return of industrial butanol production from renewable feedstock through acetone–butanol–ethanol (ABE) fermentation by clostridia, such as Clostridium beijerinckii, is the low final butanol concentration. The problem is caused by the high toxicity of butanol to the production cells, and therefore, understanding the mechanisms by which clostridia react to butanol shock is of key importance. Detailed analyses of transcriptome data that were obtained after butanol shock and their comparison with data from standard ABE fermentation have resulted in new findings, while confirmed expected population responses. Although butanol shock resulted in upregulation of heat shock protein genes, their regulation is different than was assumed based on standard ABE fermentation transcriptome data. While glucose uptake, glycolysis, and acidogenesis genes were downregulated after butanol shock, solventogenesis genes were upregulated. Cyclopropanation of fatty acids and formation of plasmalogens seem to be significant processes involved in cell membrane stabilization in the presence of butanol. Surprisingly, one of the three identified Agr quorum‐sensing system genes was upregulated. Upregulation of several putative butanol efflux pumps was described after butanol addition and a large putative polyketide gene cluster was found, the transcription of which seemed to depend on the concentration of butanol.
Collapse
Affiliation(s)
- Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Katerina Jureckova
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
12
|
Vasylkivska M, Branska B, Sedlar K, Jureckova K, Provaznik I, Patakova P. Phenotypic and Genomic Analysis of Clostridium beijerinckii NRRL B-598 Mutants With Increased Butanol Tolerance. Front Bioeng Biotechnol 2020; 8:598392. [PMID: 33224939 PMCID: PMC7674653 DOI: 10.3389/fbioe.2020.598392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
N-Butanol, a valuable solvent and potential fuel extender, can be produced via acetone-butanol-ethanol (ABE) fermentation. One of the main drawbacks of ABE fermentation is the high toxicity of butanol to producing cells, leading to cell membrane disruption, low culture viability and, consequently, low produced concentrations of butanol. The goal of this study was to obtain mutant strains of Clostridium beijerinckii NRRL B-598 with improved butanol tolerance using random chemical mutagenesis, describe changes in their phenotypes compared to the wild-type strain and reveal changes in the genome that explain improved tolerance or other phenotypic changes. Nine mutant strains with stable improved features were obtained by three different approaches and, for two of them, ethidium bromide (EB), a known substrate of efflux pumps, was used for either selection or as a mutagenic agent. It is the first utilization of this approach for the development of butanol-tolerant mutants of solventogenic clostridia, for which generally there is a lack of knowledge about butanol efflux or efflux mechanisms and their regulation. Mutant strains exhibited increase in butanol tolerance from 36% up to 127% and the greatest improvement was achieved for the strains for which EB was used as a mutagenic agent. Additionally, increased tolerance to other substrates of efflux pumps, EB and ethanol, was observed in all mutants and higher antibiotic tolerance in some of the strains. The complete genomes of mutant strains were sequenced and revealed that improved butanol tolerance can be attributed to mutations in genes encoding typical stress responses (chemotaxis, autolysis or changes in cell membrane structure), but, also, to mutations in genes X276_07980 and X276_24400, encoding efflux pump regulators. The latter observation confirms the importance of efflux in butanol stress response of the strain and offers new targets for rational strain engineering.
Collapse
Affiliation(s)
- Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czechia
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czechia
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czechia
| |
Collapse
|
13
|
Diallo M, Kint N, Monot M, Collas F, Martin-Verstraete I, van der Oost J, Kengen SWM, López-Contreras AM. Transcriptomic and Phenotypic Analysis of a spoIIE Mutant in Clostridium beijerinckii. Front Microbiol 2020; 11:556064. [PMID: 33042064 PMCID: PMC7522474 DOI: 10.3389/fmicb.2020.556064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a phosphatase involved in the activation of the first sigma factor of the forespore, σ F , during sporulation. A ΔspoIIE mutant of Clostridium beijerinckii NCIMB 8052, previously generated by CRISPR-Cas9, did not sporulate but still produced granulose and solvents. Microscopy analysis also showed that the cells of the ΔspoIIE mutant are elongated with the presence of multiple septa. This observation suggests that in C. beijerinckii, SpoIIE is necessary for the completion of the sporulation process, as seen in Bacillus and Clostridium acetobutylicum. Moreover, when grown in reactors, the spoIIE mutant produced higher levels of solvents than the wild type strain. The impact of the spoIIE inactivation on gene transcription was assessed by comparative transcriptome analysis at three time points (4 h, 11 h and 23 h). Approximately 5% of the genes were differentially expressed in the mutant compared to the wild type strain at all time points. Out of those only 12% were known sporulation genes. As expected, the genes belonging to the regulon of the sporulation specific transcription factors (σ F , σ E , σ G , σ K ) were strongly down-regulated in the mutant. Inactivation of spoIIE also caused differential expression of genes involved in various cell processes at each time point. Moreover, at 23 h, genes involved in butanol formation and tolerance, as well as in cell motility, were up-regulated in the mutant. In contrast, several genes involved in cell wall composition, oxidative stress and amino acid transport were down-regulated. These results indicate an intricate interdependence of sporulation and stationary phase cellular events in C. beijerinckii.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nicolas Kint
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Biomics platform, C2RT, Institut Pasteur, Paris, France
| | - Florent Collas
- Wageningen Food and Biobased Research, Wageningen, Netherlands
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
- Institut Universitaire de France, Paris, France
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
14
|
Role of efflux in enhancing butanol tolerance of bacteria. J Biotechnol 2020; 320:17-27. [PMID: 32553531 DOI: 10.1016/j.jbiotec.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
N-butanol, a valued solvent and potential fuel extender, could possibly be produced by fermentation using either native producers, i.e. solventogenic Clostridia, or engineered platform organisms such as Escherichia coli or Pseudomonas species, if the main process obstacle, a low final butanol concentration, could be overcome. A low final concentration of butanol is the result of its high toxicity to production cells. Nevertheless, bacteria have developed several mechanisms to cope with this toxicity and one of them is active butanol efflux. This review presents information about a few well characterized butanol efflux pumps from Gram-negative bacteria (P. putida and E. coli) and summarizes knowledge about putative butanol efflux systems in Gram-positive bacteria.
Collapse
|