1
|
Mota C, Webster M, Saidi M, Kapp U, Zubieta C, Giachin G, Manso JA, de Sanctis D. Metal ion activation and DNA recognition by the Deinococcus radiodurans manganese sensor DR2539. FEBS J 2024; 291:3384-3402. [PMID: 38652591 DOI: 10.1111/febs.17140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The accumulation of manganese ions is crucial for scavenging reactive oxygen species and protecting the proteome of Deinococcus radiodurans (Dr). However, metal homeostasis still needs to be tightly regulated to avoid toxicity. DR2539, a dimeric transcription regulator, plays a key role in Dr manganese homeostasis. Despite comprising three well-conserved domains - a DNA-binding domain, a dimerisation domain, and an ancillary domain - the mechanisms underlying both, metal ion activation and DNA recognition remain elusive. In this study, we present biophysical analyses and the structure of the dimerisation and DNA-binding domains of DR2539 in its holo-form and in complex with the 21 base pair pseudo-palindromic repeat of the dr1709 promoter region, shedding light on these activation and recognition mechanisms. The dimer presents eight manganese binding sites that induce structural conformations essential for DNA binding. The analysis of the protein-DNA interfaces elucidates the significance of Tyr59 and helix α3 sequence in the interaction with the DNA. Finally, the structure in solution as determined by small-angle X-ray scattering experiments and supported by AlphaFold modeling provides a model illustrating the conformational changes induced upon metal binding.
Collapse
Affiliation(s)
- Cristiano Mota
- ESRF - The European Synchrotron, Grenoble, France
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | | | | | - Ulrike Kapp
- ESRF - The European Synchrotron, Grenoble, France
| | | | | | - José Antonio Manso
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | | |
Collapse
|
2
|
Tóth A, Sajdik K, Gyurcsik B, Nafaee ZH, Wéber E, Kele Z, Christensen NJ, Schell J, Correia JG, Sigfridsson Clauss KGV, Pittkowski RK, Thulstrup PW, Hemmingsen L, Jancsó A. As III Selectively Induces a Disorder-to-Order Transition in the Metalloid Binding Region of the AfArsR Protein. J Am Chem Soc 2024; 146:17009-17022. [PMID: 38820242 PMCID: PMC11212059 DOI: 10.1021/jacs.3c11665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Arsenic is highly toxic and a significant threat to human health, but certain bacteria have developed defense mechanisms initiated by AsIII binding to AsIII-sensing proteins of the ArsR family. The transcriptional regulator AfArsR responds to AsIII and SbIII by coordinating the metalloids with three cysteines, located in a short sequence of the same monomer chain. Here, we characterize the binding of AsIII and HgII to a model peptide encompassing this fragment of the protein via solution equilibrium and spectroscopic/spectrometric techniques (pH potentiometry, UV, CD, NMR, PAC, EXAFS, and ESI-MS) combined with DFT calculations and MD simulations. Coordination of AsIII changes the peptide structure from a random-coil to a well-defined structure of the complex. A trigonal pyramidal AsS3 binding site is formed with almost exactly the same structure as observed in the crystal structure of the native protein, implying that the peptide possesses all of the features required to mimic the AsIII recognition and response selectivity of AfArsR. Contrary to this, binding of HgII to the peptide does not lead to a well-defined structure of the peptide, and the atoms near the metal binding site are displaced and reoriented in the HgII model. Our model study suggests that structural organization of the metal site by the inducer ion is a key element in the mechanism of the metalloid-selective recognition of this protein.
Collapse
Affiliation(s)
- Annamária Tóth
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Kadosa Sajdik
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Béla Gyurcsik
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Zeyad H. Nafaee
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Edit Wéber
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- HUN-REN-SZTE
Biomimetic Systems Research Group, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zoltan Kele
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Niels Johan Christensen
- Department
of Chemistry, Faculty of Science, University
of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Juliana Schell
- Institute
for Materials Science and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
- European
Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | - Joao Guilherme Correia
- Centro de
Cięncias e Tecnologias Nucleares, Departamento de Engenharia
e Cięncias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- European
Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | | | - Rebecca K. Pittkowski
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Peter Waaben Thulstrup
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Lars Hemmingsen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Attila Jancsó
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Knez AM, Manenica M, Jelić Matošević Z, Bertoša B. Allosteric mechanism of MntR transcription factor from alkalophilic bacterium Halalkalibacterium halodurans. J Biomol Struct Dyn 2024:1-15. [PMID: 38345054 DOI: 10.1080/07391102.2024.2314265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/28/2024] [Indexed: 03/11/2025]
Abstract
Bacterium Halalkalibacterium halodurans is an industrially important alkalophilic bacteria. It is recognized as a producer of enzymes such as β-galactosidase, xylanase, amylase and protease which are able to function at higher pH values and thus can be used in textile, food, paper industry and more. This bacterium, as any other bacterium, requires a sensitive mechanism for regulation of homeostasis of manganese ions (Mn2+) in order to survive. The key protein regulating this mechanism in H. halodurans is MntR - a transcriptional factor that binds to DNA and regulates the transcription of genes for proteins involved in manganese homeostasis. Long range all-atom molecular dynamics (MD) simulations, from 500 ns up to 1.25 µs, were used to study different forms of H. halodurans MntR in order to investigate the differences in the protein's structural and dynamical properties upon Mn2+ binding. Simulations revealed an allosteric mechanism which is activated by Mn2+ binding. The results of simulations show that Mn2+ binding alters the non-covalent interaction network of the protein structure which leads to a conformational change that primarily affects the positions of the DNA binding domains and, consequently, the DNA binding affinity of H. halodurans MntR. The key amino acid residues of the proposed mechanism were identified and their role in the proposed mechanism was computationally confirmed by MD simulations of in silico mutants.
Collapse
Affiliation(s)
- Ana Marija Knez
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Martina Manenica
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zoe Jelić Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Bosma EF, Rau MH, van Gijtenbeek LA, Siedler S. Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiol Rev 2021; 45:6284802. [PMID: 34037759 PMCID: PMC8632737 DOI: 10.1093/femsre/fuab028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Manganese (Mn2+) is an essential trace element within organisms spanning the entire tree of life. In this review, we provide an overview of Mn2+ transport and the regulation of its homeostasis in bacteria, with a focus on its functions beyond being a cofactor for enzymes. Crucial differences in Mn2+ homeostasis exist between bacterial species that can be characterized to have an iron- or manganese-centric metabolism. Highly iron-centric species require minimal Mn2+ and mostly use it as a mechanism to cope with oxidative stress. As a consequence, tight regulation of Mn2+ uptake is required, while organisms that use both Fe2+ and Mn2+ need other layers of regulation for maintaining homeostasis. We will focus in detail on manganese-centric bacterial species, in particular lactobacilli, that require little to no Fe2+ and use Mn2+ for a wider variety of functions. These organisms can accumulate extraordinarily high amounts of Mn2+ intracellularly, enabling the nonenzymatic use of Mn2+ for decomposition of reactive oxygen species while simultaneously functioning as a mechanism of competitive exclusion. We further discuss how Mn2+ accumulation can provide both beneficial and pathogenic bacteria with advantages in thriving in their niches.
Collapse
Affiliation(s)
- Elleke F Bosma
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | - Martin H Rau
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | | | - Solvej Siedler
- Corresponding author: Boege Allé 10-12, 2970 Hoersholm, Denmark. Tel: +45 52 18 08 25; E-mail:
| |
Collapse
|
5
|
Ayala-Muñoz D, Burgos WD, Sánchez-España J, Couradeau E, Falagán C, Macalady JL. Metagenomic and Metatranscriptomic Study of Microbial Metal Resistance in an Acidic Pit Lake. Microorganisms 2020; 8:microorganisms8091350. [PMID: 32899650 PMCID: PMC7563247 DOI: 10.3390/microorganisms8091350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Cueva de la Mora (CM) is an acidic, meromictic pit lake in the Iberian Pyrite Belt characterized by extremely high metal(loid) concentrations and strong gradients in oxygen, metal, and nutrient concentrations. We hypothesized that geochemical variations with depth would result in differences in community composition and in metal resistance strategies among active microbial populations. We also hypothesized that metal resistance gene (MRG) expression would correlate with toxicity levels for dissolved metal species in the lake. Water samples were collected in the upper oxic layer, chemocline, and deep anoxic layer of the lake for shotgun metagenomic and metatranscriptomic sequencing. Metagenomic analyses revealed dramatic differences in the composition of the microbial communities with depth, consistent with changing geochemistry. Based on relative abundance of taxa identified in each metagenome, Eukaryotes (predominantly Coccomyxa) dominated the upper layer, while Archaea (predominantly Thermoplasmatales) dominated the deep layer, and a combination of Bacteria and Eukaryotes were abundant at the chemocline. We compared metal resistance across communities using a curated list of protein-coding MRGs with KEGG Orthology identifiers (KOs) and found that there were broad differences in the metal resistance strategies (e.g., intracellular metal accumulation) expressed by Eukaryotes, Bacteria, and Archaea. Although normalized abundances of MRG and MRG expression were generally higher in the deep layer, expression of metal-specific genes was not strongly related to variations in specific metal concentrations, especially for Cu and As. We also compared MRG potential and expression in metagenome assembled genomes (MAGs) from the deep layer, where metal concentrations are highest. Consistent with previous work showing differences in metal resistance mechanisms even at the strain level, MRG expression patterns varied strongly among MAG populations from the same depth. Some MAG populations expressed very few MRG known to date, suggesting that novel metal resistance strategies remain to be discovered in uncultivated acidophiles.
Collapse
Affiliation(s)
- Diana Ayala-Muñoz
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA;
- Correspondence:
| | - William D. Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA;
| | - Javier Sánchez-España
- Geochemistry and Sustainable Mining Unit, Instituto Geológico y Minero de España (IGME), Calera 1, Tres Cantos, 28760 Madrid, Spain;
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, The Pennsylvania State University, 450 ASI, University Park, PA 16802, USA;
| | - Carmen Falagán
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK;
| | - Jennifer L. Macalady
- Department of Geosciences, The Pennsylvania State University, 211 Deike Building, University Park, PA 16802, USA;
| |
Collapse
|