1
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Mitroshina E, Kalinina E, Vedunova M. Optogenetics in Alzheimer's Disease: Focus on Astrocytes. Antioxidants (Basel) 2023; 12:1856. [PMID: 37891935 PMCID: PMC10604138 DOI: 10.3390/antiox12101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte-neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review's latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.
Collapse
Affiliation(s)
- Elena Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia (M.V.)
| | | | | |
Collapse
|
3
|
Novel Approaches Used to Examine and Control Neurogenesis in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22179608. [PMID: 34502516 PMCID: PMC8431772 DOI: 10.3390/ijms22179608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease.
Collapse
|
4
|
Shams Najafabadi H, Sadeghi M, Zibaii MI, Soheili ZS, Samiee S, Ghasemi P, Hosseini M, Gholami Pourbadie H, Ahmadieh H, Taghizadeh S, Ranaei Pirmardan E. Optogenetic control of neural differentiation in Opto-mGluR6 engineered retinal pigment epithelial cell line and mesenchymal stem cells. J Cell Biochem 2021; 122:851-869. [PMID: 33847009 DOI: 10.1002/jcb.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
In retinal degenerative disorders, when neural retinal cells are damaged, cell transplantation is one of the most promising therapeutic approaches. Optogenetic technology plays an essential role in the neural differentiation of stem cells via membrane depolarization. This study explored the efficacy of blue light stimulation in neuroretinal differentiation of Opto-mGluR6-engineered mouse retinal pigment epithelium (mRPE) and bone marrow mesenchymal stem cells (BMSCs). mRPE and BMSCs were selected for optogenetic study due to their capability to differentiate into retinal-specific neurons. BMSCs were isolated and phenotypically characterized by the expression of mesenchymal stem cell-specific markers, CD44 (99%) and CD105 (98.8%). mRPE culture identity was confirmed by expression of RPE-specific marker, RPE65, and epithelial cell marker, ZO-1. mRPE cells and BMSCs were transduced with AAV-MCS-IRES-EGFP-Opto-mGluR6 viral vector and stimulated for 5 days with blue light (470 nm). RNA and protein expression of Opto-mGluR6 were verified. Optogenetic stimulation-induced elevated intracellular Ca2+ levels in mRPE- and BMS-treated cells. Significant increase in cell growth rate and G1/S phase transition were detected in mRPE- and BMSCs-treated cultures. Pou4f1, Dlx2, Eomes, Barlh2, Neurod2, Neurod6, Rorb, Rxrg, Nr2f2, Ascl1, Hes5, and Sox8 were overexpressed in treated BMSCs and Barlh2, Rorb, and Sox8 were overexpressed in treated mRPE cells. Expression of Rho, Thy1, OPN1MW, Recoverin, and CRABP, as retinal-specific neuron markers, in mRPE and BMS cell cultures were demonstrated. Differentiation of ganglion, amacrine, photoreceptor cells, and bipolar and Muller precursors were determined in BMSCs-treated culture and were compared with mRPE. mRPE cells represented more abundant terminal Muller glial differentiation compared with BMSCs. Our results also demonstrated that optical stimulation increased the intracellular Ca2+ level and proliferation and differentiation of Opto-mGluR6-engineered BMSCs. It seems that optogenetic stimulation of mRPE- and BMSCs-engineered cells would be a potential therapeutic approach for retinal degenerative disorders.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Sadeghi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad I Zibaii
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Pouria Ghasemi
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hosseini
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Solomon EA, Rooney AM, Rodriguez AM, Micheva-Viteva S, Bashir R, Iyer R, Harris JF. Neuromuscular Junction Model Optimized for Electrical Platforms. Tissue Eng Part C Methods 2021; 27:242-252. [PMID: 33599165 DOI: 10.1089/ten.tec.2020.0292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs), specialized synapses between motor neurons and muscle fibers, are essential for muscle activity. A simple and reproducible cell-based in vitro NMJ platform is needed to test the impact of chemicals on the neuron-muscle communication. Our platform utilizes genetically modified neurons and muscle cells, optimized culture conditions, and commercially available multielectrode array system for recording action potentials. Neuronal cells (NSC34) were optogenetically modified with channelrhodopsin chimera to allow for simultaneous, light-mediated, millisecond-precise activation of neuronal population. This signal is propagated through functional synapses to the muscle fibers. Muscle cells (C2C12) were modified by incorporating gap junction protein (Connexin-43) to improve intracellular communication without affecting muscle differentiation. This communication between muscle fibers resulted in better signal propagation and signal strength. Optimized culture medium facilitated the growth and differentiation of both cell types together. Our system was validated using vecuronium, a muscle relaxant, which abolished the muscle response. This in vitro model provides a unique tool for establishing a NMJ platform that is easy to record and analyze. Potential applications include nondestructive long-term screening of drugs affecting the NMJ.
Collapse
Affiliation(s)
- Emilia A Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Allison M Rooney
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Arasely M Rodriguez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Rashid Bashir
- Department of Bioengineering, Nick J. Holonyak Micro and Nanotechnology Laboratory, and Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rashi Iyer
- Information System and Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
6
|
Habibey R, Sharma K, Swiersy A, Busskamp V. Optogenetics for neural transplant manipulation and functional analysis. Biochem Biophys Res Commun 2020; 527:343-349. [PMID: 32033753 DOI: 10.1016/j.bbrc.2020.01.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 01/02/2023]
Abstract
Transplantation of neural stem cells (NSCs) or NSC-derived neurons into the brain is a promising therapeutic approach to restore neuronal function. Rapid progress in the NSCs research field, particularly due to the exploitation of induced pluripotent stem cells (iPSCs), offers great potential and an unlimited source of stem cell-derived neural grafts. Studying the functional integration of these grafts into host brain tissues and their effects on each other have been boosted by the implementation of optogenetic technologies. Optogenetics provides high spatiotemporal functional manipulations of grafted or host neurons in parallel. This review aims to highlight the impact of optogenetics in neural stem cell transplantations.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies at TU Dresden, D-01307, Dresden, Germany
| | - Kritika Sharma
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies at TU Dresden, D-01307, Dresden, Germany
| | - Anka Swiersy
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies at TU Dresden, D-01307, Dresden, Germany
| | - Volker Busskamp
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies at TU Dresden, D-01307, Dresden, Germany; Universitäts-Augenklinik Bonn, University of Bonn, Dep. of Ophthalmology, D-53127, Bonn, Germany.
| |
Collapse
|