1
|
Ogwu MC, Patterson ME, Senchak PA. Phosphorus mining and bioavailability for plant acquisition: environmental sustainability perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:572. [PMID: 40259044 PMCID: PMC12011931 DOI: 10.1007/s10661-025-14012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/10/2025] [Indexed: 04/23/2025]
Abstract
This review aims to examine microbial mechanisms for phosphorus (P) solubilization, assess the impacts of P mining and scarcity, and advocate for sustainable recycling strategies to enhance agricultural and environmental resilience. Phosphorus is an indispensable macronutrient for plant growth and agricultural productivity, yet its bioavailability in cultivation systems is often constrained. This scarcity has led to a heavy reliance on fertilizers derived from mined phosphate rock (PR), which is a finite resource usually contaminated with hazardous elements such as uranium, radium, and thorium. Plants absorb only about 10-20% of P from applied fertilizers, leading to significant inefficiencies and negative environmental consequences. Additionally, the uneven geographic distribution of PR reserves exacerbates global socioeconomic and geopolitical vulnerabilities. Healthy soils enriched with diverse microbial communities provide a sustainable avenue to address these growing challenges. Rhizospheric organisms, including phosphorus-solubilizing and phosphorus-mineralizing bacteria and arbuscular mycorrhizal fungi, are capable and pivotal in the sustainable conversion of inorganic and organic P into bioavailable forms, reducing reliance on synthetic fertilizers. The mechanisms used by these microbes often include releasing organic acids to lower soil pH and solubilize insoluble inorganic phosphorus compounds and the production of enzymes, such as phosphatases and phytases, to break down organic phosphorus compounds, including phytates, into bioavailable inorganic phosphate. Some microbes secrete chelating agents, such as siderophores, to bind metal ions and free phosphorus from insoluble complexes and use biofilms for P exchange. This review also advocates for the recycling second-generation P from organic waste as a sustainable and socially equitable alternative to conventional phosphate mining.
Collapse
Affiliation(s)
- Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Living Learning Center, Appalachian State University, 212, 305 Bodenheimer Drive, Boone, NC, 28608, USA.
| | - Micaela Elizabeth Patterson
- Department of Geological and Environmental Sciences, Appalachian State University, Rankin Science West, Boone, NC, 28608 - 2067, USA
| | - Pia Angelina Senchak
- Department of Geological and Environmental Sciences, Appalachian State University, Rankin Science West, Boone, NC, 28608 - 2067, USA
| |
Collapse
|
2
|
Bell CA, Magkourilou E, Ault JR, Urwin PE, Field KJ. Phytophagy impacts the quality and quantity of plant carbon resources acquired by mutualistic arbuscular mycorrhizal fungi. Nat Commun 2024; 15:801. [PMID: 38280873 PMCID: PMC10821877 DOI: 10.1038/s41467-024-45026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi associate with the roots of many plant species, enhancing their hosts access to soil nutrients whilst obtaining their carbon supply directly as photosynthates. AM fungi often face competition for plant carbon from other organisms. The mechanisms by which plants prioritise carbon allocation to mutualistic AM fungi over parasitic symbionts remain poorly understood. Here, we show that host potato plants (Solanum tuberosum cv. Désirée) selectively allocate carbon resources to tissues interacting with AM fungi rather than those interacting with phytophagous parasites (the nematode Globodera pallida). We found that plants reduce the supply of hexoses but maintain the flow of plant-derived fatty acids to AM fungi when concurrently interacting with parasites. Transcriptomic analysis suggest that plants prioritise carbon transfer to AM fungi by maintaining expression of fatty acid biosynthesis and transportation pathways, whilst decreasing the expression of mycorrhizal-induced hexose transporters. We also report similar findings from a different plant host species (Medicago truncatula) and phytophagous pest (the aphid Myzus persicae). These findings suggest a general mechanism of plant-driven resource allocation in scenarios involving multiple symbionts.
Collapse
Affiliation(s)
- C A Bell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - E Magkourilou
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - J R Ault
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - P E Urwin
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - K J Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
3
|
Cope KR, Kafle A, Yakha JK, Pfeffer PE, Strahan GD, Garcia K, Subramanian S, Bücking H. Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. MYCORRHIZA 2022; 32:281-303. [PMID: 35511363 DOI: 10.1007/s00572-022-01077-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a root endosymbiosis with many agronomically important crop species. They enhance the ability of their host to obtain nutrients from the soil and increase the tolerance to biotic and abiotic stressors. However, AM fungal species can differ in the benefits they provide to their host plants. Here, we examined the putative molecular mechanisms involved in the regulation of the physiological response of Medicago truncatula to colonization by Rhizophagus irregularis or Glomus aggregatum, which have previously been characterized as high- and low-benefit AM fungal species, respectively. Colonization with R. irregularis led to greater growth and nutrient uptake than colonization with G. aggregatum. These benefits were linked to an elevated expression in the roots of strigolactone biosynthesis genes (NSP1, NSP2, CCD7, and MAX1a), mycorrhiza-induced phosphate (PT8), ammonium (AMT2;3), and nitrate (NPF4.12) transporters and the putative ammonium transporter NIP1;5. R. irregularis also stimulated the expression of photosynthesis-related genes in the shoot and the upregulation of the sugar transporters SWEET1.2, SWEET3.3, and SWEET 12 and the lipid biosynthesis gene RAM2 in the roots. In contrast, G. aggregatum induced the expression of biotic stress defense response genes in the shoots, and several genes associated with abiotic stress in the roots. This suggests that either the host perceives colonization by G. aggregatum as pathogen attack or that G. aggregatum can prime host defense responses. Our findings highlight molecular mechanisms that host plants may use to regulate their association with high- and low-benefit arbuscular mycorrhizal symbionts.
Collapse
Affiliation(s)
- Kevin R Cope
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Arjun Kafle
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jaya K Yakha
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Philip E Pfeffer
- Agricultural Research Service, Eastern Regional Research Center, USDA, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Gary D Strahan
- Agricultural Research Service, Eastern Regional Research Center, USDA, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Senthil Subramanian
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Montgomery DR, Biklé A, Archuleta R, Brown P, Jordan J. Soil health and nutrient density: preliminary comparison of regenerative and conventional farming. PeerJ 2022; 10:e12848. [PMID: 35127297 PMCID: PMC8801175 DOI: 10.7717/peerj.12848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
Several independent comparisons indicate regenerative farming practices enhance the nutritional profiles of crops and livestock. Measurements from paired farms across the United States indicate differences in soil health and crop nutrient density between fields worked with conventional (synthetically-fertilized and herbicide-treated) or regenerative practices for 5 to 10 years. Specifically, regenerative farms that combined no-till, cover crops, and diverse rotations-a system known as Conservation Agriculture-produced crops with higher soil organic matter levels, soil health scores, and levels of certain vitamins, minerals, and phytochemicals. In addition, crops from two regenerative no-till vegetable farms, one in California and the other in Connecticut, had higher levels of phytochemicals than values reported previously from New York supermarkets. Moreover, a comparison of wheat from adjacent regenerative and conventional no-till fields in northern Oregon found a higher density of mineral micronutrients in the regenerative crop. Finally, a comparison of the unsaturated fatty acid profile of beef and pork raised on one of the regenerative farms to a regional health-promoting brand and conventional meat from local supermarkets, found higher levels of omega-3 fats and a more health-beneficial ratio of omega-6 to omega-3 fats. Despite small sample sizes, all three crop comparisons show differences in micronutrient and phytochemical concentrations that suggest soil health is an under appreciated influence on nutrient density, particularly for phytochemicals not conventionally considered nutrients but nonetheless relevant to chronic disease prevention. Likewise, regenerative grazing practices produced meat with a better fatty acid profile than conventional and regional health-promoting brands. Together these comparisons offer preliminary support for the conclusion that regenerative soil-building farming practices can enhance the nutritional profile of conventionally grown plant and animal foods.
Collapse
Affiliation(s)
- David R. Montgomery
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, United States
| | | | | | | | | |
Collapse
|
5
|
Salmeron-Santiago IA, Martínez-Trujillo M, Valdez-Alarcón JJ, Pedraza-Santos ME, Santoyo G, Pozo MJ, Chávez-Bárcenas AT. An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms 2021; 10:75. [PMID: 35056524 PMCID: PMC8781679 DOI: 10.3390/microorganisms10010075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs that supply mineral nutrients to the host plant in exchange for carbon derived from photosynthesis. Sucrose is the end-product of photosynthesis and the main compound used by plants to translocate photosynthates to non-photosynthetic tissues. AMF alter carbon distribution in plants by modifying the expression and activity of key enzymes of sucrose biosynthesis, transport, and/or catabolism. Since sucrose is essential for the maintenance of all metabolic and physiological processes, the modifications addressed by AMF can significantly affect plant development and stress responses. AMF also modulate plant lipid biosynthesis to acquire storage reserves, generate biomass, and fulfill its life cycle. In this review we address the most relevant aspects of the influence of AMF on sucrose and lipid metabolism in plants, including its effects on sucrose biosynthesis both in photosynthetic and heterotrophic tissues, and the influence of sucrose on lipid biosynthesis in the context of the symbiosis. We present a hypothetical model of carbon partitioning between plants and AMF in which the coordinated action of sucrose biosynthesis, transport, and catabolism plays a role in the generation of hexose gradients to supply carbon to AMF, and to control the amount of carbon assigned to the fungus.
Collapse
Affiliation(s)
| | | | - Juan J. Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58880, Mexico;
| | - Martha E. Pedraza-Santos
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan 60170, Mexico;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - María J. Pozo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ana T. Chávez-Bárcenas
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan 60170, Mexico;
| |
Collapse
|
6
|
Montgomery DR, Biklé A. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.699147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Controversy has long surrounded the question of nutritional differences between crops grown organically or using now-conventional methods, with studies dating back to the 1940s showing that farming methods can affect the nutrient density of crops. More recent studies have shown how reliance on tillage and synthetic nitrogen fertilizers influence soil life, and thereby soil health, in ways that can reduce mineral micronutrient uptake by and phytochemical production in crops. While organic farming tends to enhance soil health and conventional practices degrade it, relying on tillage for weed control on both organic and conventional farms degrades soil organic matter and can disrupt soil life in ways that reduce crop mineral uptake and phytochemical production. Conversely, microbial inoculants and compost and mulch that build soil organic matter can increase crop micronutrient and phytochemical content on both conventional and organic farms. Hence, agronomic effects on nutritional profiles do not fall out simply along the conventional vs. organic distinction, making the effects of farming practices on soil health a better lens for assessing their influence on nutrient density. A review of previous studies and meta-studies finds little evidence for significant differences in crop macronutrient levels between organic and conventional farming practices, as well as substantial evidence for the influence of different cultivars and farming practices on micronutrient concentrations. More consistent differences between organic and conventional crops include that conventional crops contain greater pesticide levels, whereas organically grown crops contain higher levels of phytochemicals shown to exhibit health-protective antioxidant and anti-inflammatory properties. Thus, part of the long-running controversy over nutritional differences between organic and conventional crops appears to arise from different definitions of what constitutes a nutrient—the conventional definition of dietary constituents necessary for growth and survival, or a broader one that also encompasses compounds beneficial for maintenance of health and prevention of chronic disease. For assessing the effects of farming practices on nutrient density soil health adds a much needed dimension—the provisioning of micronutrients and phytochemicals that support human health.
Collapse
|
7
|
Stahlhut KN, Dowell JA, Temme AA, Burke JM, Goolsby EW, Mason CM. Genetic control of arbuscular mycorrhizal colonization by Rhizophagus intraradices in Helianthus annuus (L.). MYCORRHIZA 2021; 31:723-734. [PMID: 34480215 DOI: 10.1007/s00572-021-01050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Plant symbiosis with arbuscular mycorrhizal (AM) fungi provides many benefits, including increased nutrient uptake, drought tolerance, and belowground pathogen resistance. To develop a better understanding of the genetic architecture of mycorrhizal symbiosis, we conducted a genome-wide association study (GWAS) of this plant-fungal interaction in cultivated sunflower. A diversity panel of cultivated sunflower (Helianthus annuus L.) was phenotyped for root colonization under inoculation with the AM fungus Rhizophagus intraradices. Using a mixed linear model approach with a high-density genetic map, we identified genomic regions that are likely associated with R. intraradices colonization in sunflower. Additionally, we used a set of twelve diverse lines to assess the effect that inoculation with R. intraradices has on dried shoot biomass and macronutrient uptake. Colonization among lines in the mapping panel ranged from 0-70% and was not correlated with mycorrhizal growth response, shoot phosphorus response, or shoot potassium response among the Core 12 lines. Association mapping yielded three single-nucleotide polymorphisms (SNPs) that were significantly associated with R. intraradices colonization. This is the first study to use GWAS to identify genomic regions associated with AM colonization in an Asterid eudicot species. Three genes of interest identified from the regions containing these SNPs are likely related to plant defense.
Collapse
Affiliation(s)
| | - Jordan A Dowell
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
8
|
Vučić V, Müller S. New developments in biological phosphorus accessibility and recovery approaches from soil and waste streams. Eng Life Sci 2021; 21:77-86. [PMID: 33716607 PMCID: PMC7923555 DOI: 10.1002/elsc.202000076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/18/2023] Open
Abstract
Phosphorus (P) is a non-renewable resource and is on the European Union's list of critical raw materials. It is predicted that the P consumption peak will occur in the next 10 to 20 years. Therefore, there is an urgent need to find accessible sources in the immediate environment, such as soil, and to use alternative resources of P such as waste streams. While enormous progress has been made in chemical P recovery technologies, most biological technologies for P recovery are still in the developmental stage and are not reaching industrial application. Nevertheless, biological P recovery could offer good solutions as these technologies can return P to the human P cycle in an environmentally friendly way. This mini-review provides an overview of the latest approaches to make P available in soil and to recover P from plant residues, animal and human waste streams by exploiting the universal trait of P accumulation and P turnover in microorganisms and plants.
Collapse
Affiliation(s)
- Vedran Vučić
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research ‐ UFZDepartment Environmental MicrobiologyLeipzigGermany
| | - Susann Müller
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research ‐ UFZDepartment Environmental MicrobiologyLeipzigGermany
| |
Collapse
|
9
|
Van't Padje A, Oyarte Galvez L, Klein M, Hink MA, Postma M, Shimizu T, Kiers ET. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. THE ISME JOURNAL 2021; 15:435-449. [PMID: 32989245 PMCID: PMC8027207 DOI: 10.1038/s41396-020-00786-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022]
Abstract
Arbuscular mycorrhizal fungi function as conduits for underground nutrient transport. While the fungal partner is dependent on the plant host for its carbon (C) needs, the amount of nutrients that the fungus allocates to hosts can vary with context. Because fungal allocation patterns to hosts can change over time, they have historically been difficult to quantify accurately. We developed a technique to tag rock phosphorus (P) apatite with fluorescent quantum-dot (QD) nanoparticles of three different colors, allowing us to study nutrient transfer in an in vitro fungal network formed between two host roots of different ages and different P demands over a 3-week period. Using confocal microscopy and raster image correlation spectroscopy, we could distinguish between P transfer from the hyphae to the roots and P retention in the hyphae. By tracking QD-apatite from its point of origin, we found that the P demands of the younger root influenced both: (1) how the fungus distributed nutrients among different root hosts and (2) the storage patterns in the fungus itself. Our work highlights that fungal trade strategies are highly dynamic over time to local conditions, and stresses the need for precise measurements of symbiotic nutrient transfer across both space and time.
Collapse
Affiliation(s)
- Anouk Van't Padje
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Loreto Oyarte Galvez
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Malin Klein
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Mark A Hink
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Thomas Shimizu
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - E Toby Kiers
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|