1
|
Holohan BC, Duarte MS, Szabo-Corbacho MA, Cavaleiro AJ, Salvador AF, Pereira MA, Ziels RM, Frijters CTMJ, Pacheco-Ruiz S, Carballa M, Sousa DZ, Stams AJM, O'Flaherty V, van Lier JB, Alves MM. Principles, Advances, and Perspectives of Anaerobic Digestion of Lipids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4749-4775. [PMID: 35357187 DOI: 10.1021/acs.est.1c08722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several problems associated with the presence of lipids in wastewater treatment plants are usually overcome by removing them ahead of the biological treatment. However, because of their high energy content, waste lipids are interesting yet challenging pollutants in anaerobic wastewater treatment and codigestion processes. The maximal amount of waste lipids that can be sustainably accommodated, and effectively converted to methane in anaerobic reactors, is limited by several problems including adsorption, sludge flotation, washout, and inhibition. These difficulties can be circumvented by appropriate feeding, mixing, and solids separation strategies, provided by suitable reactor technology and operation. In recent years, membrane bioreactors and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic technology.
Collapse
Affiliation(s)
- B Conall Holohan
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
- NVP Energy Ltd., IDA Technology and Business Park, Mervue, Galway H91 TK33, Ireland
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - M Alejandra Szabo-Corbacho
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - M Alcina Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z 4, Canada
| | | | - Santiago Pacheco-Ruiz
- Biothane, Veolia Water Technologies, Tanthofdreef 21, 2623 EW Delft, The Netherlands
| | - Marta Carballa
- CRETUS, Department of Chemical Engineering, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Jules B van Lier
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
- Section Sanitary Engineering, CEG Faculty, Delft University of Technology, 2628 CN, Delft, The Netherlands
| | - M Madalena Alves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Wang B, Kuang S, Shao H, Cheng F, Wang H. Improving soil fertility by driving microbial community changes in saline soils of Yellow River Delta under petroleum pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114265. [PMID: 34915391 DOI: 10.1016/j.jenvman.2021.114265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
It is promising to use indigenous microorganisms for fertility improvement in petroleum-contaminated coastal soil. As a result, the microbial community and physicochemical property are the base for the restoration. For the detailed information, the Phragmites Communis (P), Chinese Tamarisk (C), Suaeda salsa (S), and new Bare Land (B) soil of Yellow River Delta was 90 g in 100 mL sterile bottles simulated at 25 °C with soil: petroleum = 10:1 in the incubator for four months. The samples were detected at 60 and 120 days along with untreated soil and aged Oil Sludge (O) as control. The results showed that all the samples were alkaline (pH 7.99-8.83), which the salinity and NO3- content of incubate soil followed the in situ samples as P (1.09-1.72‰, 8.02-8.17 mg kg-1), C (10.61-13.79‰, 5.99-6.07 mg kg-1), S (10.19-12.43‰, 3.64-4.22 mg kg-1), B (31.85-32.45‰, 3.56-3.72 mg kg-1) and O (31.61-34.30‰, 0.89-0.90 mg kg-1). NO3- and organic carbon decreased after incubation, which the polluted samples (86.63-92.63 g kg-1) still had higher organic carbon than untreated ones with more NH4+ consumption. The high-throughput sequence results showed that the Gammaproteobacteria and Alphaproteobacteria were dominant in all samples, while sulfate reducting bacteria Alphaproteobacteria decreased at 120 days. Meanwhile, the electroactive Gammaproteobacteria might symbiosis with Methanosaetaceae and Methanosarcinaceae, degrading petroleum after electron receptors depletion. Nitrososphaeraceae and Nitrosopumilaceae oxidise NH4+ to NO2- for intra-aerobic anaerobes and denitrifying bacteria producing oxygen for biodegradation in polluted Phragmites Communis soil. The halotolerant Halomicrobiaceae and Haloferacaceae predominated in saline Chinese Tamarisk, Suaeda Salsa and Bare Land, which were potential electroactive degradater. As the ageing sludge formed, the hydrogen trophic methanogens Methanothermobacteraceae (73.90-92.72%) was prevalent with the petroleum pollution. In conclusion, petroleum initiated two-phase in the sludge forming progress: electron acceptor consumption and electron transfer between degradater and methanogens. Based on the results, the domestic sewage N, P removal coupling and electron transport will be the basement for polluted soils fertility improvement.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hongbo Shao
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences(JAAS), Nanjing, 210014, PR China.
| | - Fei Cheng
- Weifang Municipal Public Utility Service Center, Wei Fang, 261061, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| |
Collapse
|
3
|
Jiang Q, Xin Y, Jiang Y, Huang L, Shen P. Improving the efficiency of anaerobic digestion of Molasses alcohol wastewater using Cassava alcohol wastewater as a mixed feedstock. BIORESOURCE TECHNOLOGY 2022; 344:126179. [PMID: 34695583 DOI: 10.1016/j.biortech.2021.126179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Cassava alcohol wastewater (CAW) was utilized as a mixed feedstock to explore whether the addition of CAW could improve the anaerobic digestion of Molasses alcohol wastewater (MAW). The result showed that the rate of removal of the soluble chemical oxygen demand in the M treatment mixed with CAW was 70.13 ± 0.16%, which was significantly higher than that of the C treatment (only MAW), which was 61.23 ± 0.36%. Co-digestion in the M treatment resulted in higher methane production, achieving 23.89% increase in methane yield compared to C treatment. The addition of CAW helps to alleviate the accumulation of volatile fatty acids (397.06 ± 141.82 mg·L-1), enhance the stability of system and promote the establishment of stable and active microbial communities. Microbial community structure analysis indicated that hydrolytic bacteria such as Bacteroidetes, Firmicutes, and Proteobacteria, and acetoclastic methanogens, including Methanosaeta and Methanosarcina were more abundant in the co-digests.
Collapse
Affiliation(s)
- Qiong Jiang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning 530004, Guangxi, China
| | - Yuan Xin
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning 530004, Guangxi, China
| | - Yanbo Jiang
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd, Nanning 530029, Guangxi, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning 530004, Guangxi, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning 530004, Guangxi, China.
| |
Collapse
|
4
|
Gaspari M, Treu L, Zhu X, Palù M, Angelidaki I, Campanaro S, Kougias PG. Microbial dynamics in biogas digesters treating lipid-rich substrates via genome-centric metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146296. [PMID: 33714811 DOI: 10.1016/j.scitotenv.2021.146296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Co-digestion with lipid-rich substrates is a likely strategy in biogas plants, due to their high energy content. However, the process stability is vulnerable to inhibition due to the sudden increase of fatty-acid concentration. Therefore, techniques that promote the adaptation of the microorganisms to the presence of lipids have been proposed. In this frame, the initial hypothesis of the work was that a gradual change in feedstock composition would enable us to elucidate the microbial organisation as a result of deterministic (i.e. chemical composition of influent) and stochastic (e.g. interspecies interactions) factors. This study investigates the response of the biogas microbiome to gradual increment of the Organic Loading Rate by supplementing the influent feedstock with Na-Oleate. The results showed that as a response to the feedstock shifts three clusters describing microbes behaviours were formed. The dynamics and the functional role of the formed microbial clusters were unveiled, providing explanations for their abundance and behavior. Process monitoring indicated that the reactors responded immediately to lipid supplementation and they managed to stabilize their performance in a short period of time. The dominance of Candidatus Methanoculleus thermohydrogenotrophicum in the biogas reactors fed exclusively with cattle manure indicated that the predominant methanogenic pathway was hydrogenotrophic. Additionally, the abundance of this methanogen was further enhanced upon lipid supplementation and its growth was supported by syntrophic bacteria capable to metabolize fatty acids. However, with the shift back to the original feedstock (i.e. solely cattle manure), the microbial dynamicity significantly altered with a remarkable increment in the abundance of a propionate degrader affiliated to the order of Bacteroidales, which became the predominant microorganism of the consortium.
Collapse
Affiliation(s)
- Maria Gaspari
- Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Soil and Water Resources Institute, Hellenic Agricultural Organisation Demeter, Thermi, Thessaloniki 57001, Greece
| | - Laura Treu
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Matteo Palù
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Demeter, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
5
|
Hashemi S, Hashemi SE, Lien KM, Lamb JJ. Molecular Microbial Community Analysis as an Analysis Tool for Optimal Biogas Production. Microorganisms 2021; 9:microorganisms9061162. [PMID: 34071282 PMCID: PMC8226781 DOI: 10.3390/microorganisms9061162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The microbial diversity in anaerobic digestion (AD) is important because it affects process robustness. High-throughput sequencing offers high-resolution data regarding the microbial diversity and robustness of biological systems including AD; however, to understand the dynamics of microbial processes, knowing the microbial diversity is not adequate alone. Advanced meta-omic techniques have been established to determine the activity and interactions among organisms in biological processes like AD. Results of these methods can be used to identify biomarkers for AD states. This can aid a better understanding of system dynamics and be applied to producing comprehensive models for AD. The paper provides valuable knowledge regarding the possibility of integration of molecular methods in AD. Although meta-genomic methods are not suitable for on-line use due to long operating time and high costs, they provide extensive insight into the microbial phylogeny in AD. Meta-proteomics can also be explored in the demonstration projects for failure prediction. However, for these methods to be fully realised in AD, a biomarker database needs to be developed.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Sayed Ebrahim Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Kristian M. Lien
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Jacob J. Lamb
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence:
| |
Collapse
|
6
|
Shakeri Yekta S, Liu T, Mendes Anacleto T, Axelsson Bjerg M, Šafarič L, Goux X, Karlsson A, Björn A, Schnürer A. Effluent solids recirculation to municipal sludge digesters enhances long-chain fatty acids degradation capacity. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:56. [PMID: 33663594 PMCID: PMC7934545 DOI: 10.1186/s13068-021-01913-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/21/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND Slow degradation kinetics of long-chain fatty acids (LCFA) and their accumulation in anaerobic digesters disrupt methanogenic activity and biogas production at high loads of waste lipids. In this study, we evaluated the effect of effluent solids recirculation on microbial LCFA (oleate) degradation capacity in continuous stirred-tank sludge digesters, with the overall aim of providing operating conditions for efficient co-digestion of waste lipids. Furthermore, the impacts of LCFA feeding frequency and sulfide on process performance and microbial community dynamics were investigated, as parameters that were previously shown to be influential on LCFA conversion to biogas. RESULTS Effluent solids recirculation to municipal sludge digesters enabled biogas production of up to 78% of the theoretical potential from 1.0 g oleate l-1 day-1. In digesters without effluent recirculation, comparable conversion efficiency could only be reached at oleate loading rates up to 0.5 g l-1 day-1. Pulse feeding of oleate (supplementation of 2.0 g oleate l-1 every second day instead of 1.0 g oleate l-1 every day) did not have a substantial impact on the degree of oleate conversion to biogas in the digesters that operated with effluent recirculation, while it marginally enhanced oleate conversion to biogas in the digesters without effluent recirculation. Next-generation sequencing of 16S rRNA gene amplicons of bacteria and archaea revealed that pulse feeding resulted in prevalence of fatty acid-degrading Smithella when effluent recirculation was applied, whereas Candidatus Cloacimonas prevailed after pulse feeding of oleate in the digesters without effluent recirculation. Combined oleate pulse feeding and elevated sulfide level contributed to increased relative abundance of LCFA-degrading Syntrophomonas and enhanced conversion efficiency of oleate, but only in the digesters without effluent recirculation. CONCLUSIONS Effluent solids recirculation improves microbial LCFA degradation capacity, providing possibilities for co-digestion of larger amounts of waste lipids with municipal sludge.
Collapse
Affiliation(s)
- Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden.
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.
| | - Tong Liu
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007, Uppsala, Sweden
| | - Thuane Mendes Anacleto
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Mette Axelsson Bjerg
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Luka Šafarič
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Xavier Goux
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4422, Belvaux, Luxembourg
| | - Anna Karlsson
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Scandinavian Biogas Fuels AB, 11160, Stockholm, Sweden
| | - Annika Björn
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Anna Schnürer
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007, Uppsala, Sweden
| |
Collapse
|
7
|
Elsamadony M, Mostafa A, Fujii M, Tawfik A, Pant D. Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. WATER RESEARCH 2021; 190:116732. [PMID: 33316662 DOI: 10.1016/j.watres.2020.116732] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The inhibition of the anaerobic digestion (AD) process, caused by long chain fatty acids (LCFAs), has been considered as an important issue in the wastewater treatment sector. Proper understanding of mechanisms behind the inhibition is a must for further improvements of the AD process in the presence of LCFAs. Through analyzing recent literature, this review extensively describes the mechanism of LCFAs degradation, during AD. Further, a particular focus was directed to the key parameters which could affect such process. Besides, this review highlights the recent research efforts in mitigating LCFAs-caused inhibition, through the addition of commonly used additives such as cations and natural adsorbents. Specifically, additives such as bentonite, cation-based adsorbents, as well as zeolite and other natural adsorbents for alleviating the LCFAs-induced inhibition are discussed in detail. Further, panoramic evaluations for characteristics, various mechanisms of reaction, merits, limits, recommended doses, and preferred conditions for each of the different additives are provided. Moreover, the potential for increasing the methane production via pretreatment using those additives are discussed. Finally, we provide future horizons for the alternative materials that can be utilized, more efficiently, for both mitigating LCFAs-based inhibition and boosting methane potential in the subsequent digestion of LCFA-related wastes.
Collapse
Affiliation(s)
- Mohamed Elsamadony
- Tokyo Institute of Technology, Civil and Environmental Engineering Department, Meguro-ku, Tokyo, 152-8552, Japan; Tanta University, Faculty of Engineering, Public Works Engineering Department, 31521, Tanta City, Egypt.
| | - Alsayed Mostafa
- Department of Smart City Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, South Korea
| | - Manabu Fujii
- Tokyo Institute of Technology, Civil and Environmental Engineering Department, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Giza, 12622, Egypt
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| |
Collapse
|