1
|
Kiełbowski K, Żychowska J, Bakinowska E, Pawlik A. Non-Coding RNA Involved in the Pathogenesis of Atherosclerosis-A Narrative Review. Diagnostics (Basel) 2024; 14:1981. [PMID: 39272765 PMCID: PMC11394555 DOI: 10.3390/diagnostics14171981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Atherosclerosis is a highly prevalent condition associated with lipid accumulation in the intima layer of arterial blood vessels. The development of atherosclerotic plaques is associated with the incidence of major cardiovascular events, such as acute coronary syndrome or ischemic stroke. Due to the significant prevalence of atherosclerosis and its subclinical progression, it is associated with severe and potentially lethal complications. The pathogenesis of atherosclerosis is complex and not entirely known. The identification of novel non-invasive diagnostic markers and treatment methods that could suppress the progression of this condition is highly required. Non-coding RNA (ncRNA) involves several subclasses of RNA molecules. microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) differently regulate gene expression. Importantly, these molecules are frequently dysregulated under pathological conditions, which is associated with enhanced or suppressed expression of their target genes. In this review, we aim to discuss the involvement of ncRNA in crucial mechanisms implicated in the pathogenesis of atherosclerosis. We summarize current evidence on the potential use of these molecules as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Wang N, Ren L, Danser AHJ. Vacuolar H +-ATPase in Diabetes, Hypertension, and Atherosclerosis. Microcirculation 2024; 31:e12855. [PMID: 38683673 DOI: 10.1111/micc.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Collapse
Affiliation(s)
- Na Wang
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liwei Ren
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Keshavarz R, Reiner Ž, Zengin G, Eid AH, Sahebkar A. MicroRNA-mediated Regulation of LDL Receptor: Biological and Pharmacological Implications. Curr Med Chem 2024; 31:1830-1838. [PMID: 37026494 DOI: 10.2174/0929867330666230407091652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 04/08/2023]
Abstract
One of the main causes of atherosclerosis is a disruption in cellular cholesterol hemostasis. The low-density lipoprotein receptor (LDLR) is an important factor in maintaining cholesterol homeostasis by the receptor-mediated endocytosis of LDL particles. Defective hepatic LDLR activity and uptake of LDL particles lead to elevated blood levels of low-density lipoprotein cholesterol (LDL-C), which is associated with a higher risk of atherosclerotic cardiovascular disease. LDLR expression can be affected by microRNAs (miRNAs). Some miRNAs, like miR-148a, miR-185, miR-224, miR-520, miR-128-1, miR-27a/b, miR-130b, and miR-301 seem to be important post-transcriptional regulators of LDLR related genes. These findings indicate the critical role of miRNAs in regulating LDL metabolism. The aim of this review was to provide insight into the miRNAs involved in LDLR activity and their potential roles in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Reyhaneh Keshavarz
- Department of Genetics, Faculty of Biological Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Cruciani S, Delitala AP, Cossu ML, Ventura C, Maioli M. Management of Obesity and Obesity-Related Disorders: From Stem Cells and Epigenetics to Its Treatment. Int J Mol Sci 2023; 24:2310. [PMID: 36768633 PMCID: PMC9916844 DOI: 10.3390/ijms24032310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Obesity is a complex worldwide disease, characterized by an abnormal or excessive fat accumulation. The onset of this pathology is generally linked to a complex network of interactions among genetic and environmental factors, aging, lifestyle, and diets. During adipogenesis, several regulatory mechanisms and transcription factors are involved. As fat cells grow, adipose tissue becomes increasingly large and dysfunctional, losing its endocrine function, secreting pro-inflammatory cytokines, and recruiting infiltrating macrophages. This long-term low-grade systemic inflammation results in insulin resistance in peripheral tissues. In this review we describe the main mechanisms involved in adipogenesis, from a physiological condition to obesity. Current therapeutic strategies for the management of obesity and the related metabolic syndrome are also reported.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | | | - Maria Laura Cossu
- General Surgery Unit 2 “Clinica Chirurgica” Medical, Surgical and Experimental Sciences Department, University of Sassari, 07100 Sassari, Italy
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), Via di Corticella 183, 40128 Bologna, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
6
|
Zhao X, Chen X, Wu X, Zhu L, Long J, Su L, Gu L. Machine Learning Analysis of MicroRNA Expression Data Reveals Novel Diagnostic Biomarker for Ischemic Stroke. J Stroke Cerebrovasc Dis 2021; 30:105825. [PMID: 34022583 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Ischemic stroke (IS) is one of the leading causes of morbidity and mortality worldwide. Circulating microRNAs have a potential as minimally invasive biomarkers for disease prediction, diagnosis, and prognosis. In this study, we sought to use different machine learning algorithms to identify an optimal model of microRNA by integrating the expression data of pre-selected microRNAs for discriminating patients with IS from controls. METHODS The expression level of microRNAs in the peripheral blood of 50 patients with IS and 50 matched controls were assessed through real-time polymerase chain reaction (qRT-PCR). Machine learning algorithms, including artificial neural network, random forest, extreme gradient boosting, and support vector machine (SVM) were employed via R 3.6.3 software to establish diagnostic models for IS. RESULTS The IS group had significantly increased expression levels of miR-19a (P < 0.001), miR-148a (P < 0.001), miR-320d (P = 0.003), and miR-342-3p (P < 0.001) compared with the control group. MiR-148a, miR-342-3p, miR-19a, and miR-320d yielded areas under the receiver operating characteristic curve (AUC) of 0.872, 0.844, 0.721, and 0.673, respectively, with 0.740, 0.940, 0.740, and 0.840 sensitivity and 0.920, 0.640, 0.600, and 0.440 specificity, respectively. Model miR-148a + miR-342-3p + miR-19a had the best predictive value when analyzed via SVM algorithm with AUC, sensitivity, and specificity values of 0.958, 0.937, and 0.889, respectively. CONCLUSION The diagnostic value of the combination of miR-148a, miR-342-3p, and miR-19a through SVM algorithm has the potential to serve as a feasible approach to promote the diagnosis of IS.
Collapse
Affiliation(s)
- Xinyi Zhao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine.
| | - Xingmei Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine.
| | - Xulong Wu
- School of Public Health, Guangxi Medical University.
| | - Lulu Zhu
- School of Public Health, Guangxi Medical University.
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases.
| | - Li Su
- School of Public Health, Guangxi Medical University; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases.
| | - Lian Gu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine.
| |
Collapse
|
7
|
Bovine Milk-Derived Exosomes as a Drug Delivery Vehicle for miRNA-Based Therapy. Int J Mol Sci 2021; 22:ijms22031105. [PMID: 33499350 PMCID: PMC7865385 DOI: 10.3390/ijms22031105] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a known role as mediators of gene expression in crucial biological processes, which converts them into high potential contenders in the ongoing search for effective therapeutic strategies. However, extracellular RNAs are unstable and rapidly degraded, reducing the possibility of successfully exerting a biological function in distant target cells. Strategies aimed at enhancing the therapeutic potential of miRNAs include the development of efficient, tissue-specific and nonimmunogenic delivery methods. Since miRNAs were discovered to be naturally transported within exosomes, a type of extracellular vesicle that confers protection against RNase degradation and increases miRNA stability have been proposed as ideal delivery vehicles for miRNA-based therapy. Although research in this field has grown rapidly in the last few years, a standard, reproducible and cost-effective protocol for exosome isolation and extracellular RNA delivery is lacking. We aimed to evaluate the use of milk-derived extracellular vesicles as vehicles for extracellular RNA drug delivery. With this purpose, exosomes were isolated from raw bovine milk, combining ultracentrifugation and size exclusion chromatography (SEC) methodology. Isolated exosomes were then loaded with exogenous hsa-miR148a-3p, a highly expressed miRNA in milk exosomes. The suitability of exosomes as delivery vehicles for extracellular RNAs was tested by evaluating the absorption of miR-148a-3p in hepatic (HepG2) and intestinal (Caco-2) cell lines. The potential exertion of a biological effect by miR-148a-3p was assessed by gene expression analysis, using microarrays. Results support that bovine milk is a cost-effective source of exosomes which can be used as nanocarriers of functional miRNAs with a potential use in RNA-based therapy. In addition, we show here that a combination of ultracentrifugation and SEC technics improve exosome enrichment, purity, and integrity for subsequent use.
Collapse
|