1
|
Song Y, John Martin JJ, Liu X, Li X, Hou M, Zhang R, Xu W, Li W, Cao H. Unraveling the response of secondary metabolites to cold tolerance in oil palm by integration of physiology and metabolomic analyses. BMC PLANT BIOLOGY 2025; 25:279. [PMID: 40033206 PMCID: PMC11877684 DOI: 10.1186/s12870-025-06292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Oil palm (Elaeis guineensis), a tropical crop, is highly sensitive to temperature fluctuations, with low temperatures significantly limiting its growth, development, and geographical distribution. Understanding the adaptive mechanisms of oil palm under low-temperature stress is essential for developing cold-tolerant varieties. This study focused on analyzing the physiological and metabolomic responses of annual thin-shell oil palm seedlings to low-temperature exposure (8 °C) for different time periods: 0 h (CK), 0.5 h (CD05), 1 h (CD1), 2 h (CD2), 4 h (CD4), and 8 h (CD8). RESULTS Physiological analysis showed a significant increase in the activity of antioxidant enzymes, such as superoxide dismutase (SOD) and peroxidase (POD), highlighting the activation of oxidative stress defense mechanisms. Concurrently, elevated relative conductivity, indicated cell membrane damage, a common consequence of cold-induced oxidative stress. Metabolomic profiling using LC-MS/MS revealed significant changes in metabolite composition, with differential metabolites predominately enriched in key metabolic pathways such as arginine and proline metabolism, glycine, serine, and threonine metabolism, plant hormone biosynthesis, and flavonoid biosynthesis pathways. Notable metabolites such as citric acid, L-aspartic acid, L-tryptophan, and vitexin showed significant accumulation, indicating their roles in enhancing cold tolerance through improved antioxidant defenses, promoting osmoregulation, and stabilizing cellular structures. Correlation analysis further emphasized the importance of flavonoids and plant hormones in the cold stress response. In particular, vitexin, isovitexin, and apigenin 6-C-glucoside were significantly enriched, suggesting their contribution to antioxidant and stress signaling networks. Furthermore, metabolites involved in amino acid metabolism, including L-glutamic acid, sarcosine, and proline, were upregulated, supporting enhanced protein synthesis and cellular repair under stress. This metabolic reprogramming correlated with physiological improvements, as evidenced by increased relative conductivity and post cold exposure growth recovery. CONCLUSION This study provides critical insights into the physiological and metabolic adaptations of oil palm to cold stress, emphasizing the significant role of secondary metabolites-such as flavonoids, amino acids, and plant hormones-in enhancing cold tolerance. Theses metabolites contribute to oxidative stress protection, osmotic regulation, and cell wall stabilization enabling the plant to better withstand with low temperature condition. The findings provide a strong foundation for molecular research and breeding initiatives aimed at developing cold tolerant oil palm varieties, a crop of siginificant economic value. By combining metabolomic profiling with physiological analyses, provides a holistic understanding of the adaptive mechanisms in oil palm under cold stress.This integrated approach identifies key metabolic pathways that can be targeted in breeding programs to enhance cold resilience, paving the way for improved crop performance in challenging environments.
Collapse
Affiliation(s)
- Yuqiao Song
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan Province, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Mingming Hou
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan Province, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Ruimin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Wen Xu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan Province, China.
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China.
| |
Collapse
|
2
|
Chen G, Zhang D, Chen F, Zhou Y, Cai H, Gu H, Yue Y, Wang L, Liu G. Uncovering the molecular mechanisms of Acer fabri in adjusting to low-temperature stress through integrated physiological and transcriptomic analysis. Sci Rep 2025; 15:3036. [PMID: 39856103 PMCID: PMC11760354 DOI: 10.1038/s41598-025-86328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Acer fabri is an excellent color-leaf tree species, with high ornamental value. Low temperatures are known to limit the growth and geographical distribution of A. fabri. The molecular mechanism of A. fabri in response to low-temperature stress was rarely reported. To understand the molecular mechanism of A. fabri in response to low-temperature stress, relevant physiological changes were identified and the transcriptome sequencing was conducted under different stress durations. The results showed that the proline, the soluble sugar (SS) and the soluble protein (SP) content increased in A. fabri leaves under low-temperature stress, while the peroxidase (POD) and activating superoxide dismutase (SOD) activity increased first and then decreased. It was also found by the OPLS-DA analysis that SOD is the most important physiological indicator of A. fabri in response to low-temperature stress. By transcriptome sequencing, a total of 56,732 genes were identified, including 832 transcription factors (TFs). Differentially expressed genes (DEGs) were significantly enriched in metabolic pathways, phytohormone signaling, and plant mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, the analysis of gene co-expression networks, specifically weighted gene co-expression network analysis (WGCNA), indicates that Af0048792 and Af0026061 could be significant in the response to stress from low temperatures. Furthermore, it was observed that NAC (Af0033429) and MIKC (Af0004917) might have interactions with Af0048792, and MIKC (Af0004917) may additionally interact with Af0026061. These findings could enhance our understanding of the molecular mechanisms of A. fabri in response to low-temperature stress.
Collapse
Affiliation(s)
- Gongwei Chen
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong, 212400, China
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Dandan Zhang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Fengyuan Chen
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Yixiao Zhou
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Hongyu Cai
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong, 212400, China
| | - Heng Gu
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China.
| | - Guohua Liu
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong, 212400, China.
| |
Collapse
|
3
|
Xu W, John Martin JJ, Li X, Liu X, Zhang R, Hou M, Cao H, Cheng S. Unveiling the Secrets of Oil Palm Genetics: A Look into Omics Research. Int J Mol Sci 2024; 25:8625. [PMID: 39201312 PMCID: PMC11354864 DOI: 10.3390/ijms25168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Oil palm is a versatile oil crop with numerous applications. Significant progress has been made in applying histological techniques in oil palm research in recent years. Whole genome sequencing of oil palm has been carried out to explain the function and structure of the order genome, facilitating the development of molecular markers and the construction of genetic maps, which are crucial for studying important traits and genetic resources in oil palm. Transcriptomics provides a powerful tool for studying various aspects of plant biology, including abiotic and biotic stresses, fatty acid composition and accumulation, and sexual reproduction, while proteomics and metabolomics provide opportunities to study lipid synthesis and stress responses, regulate fatty acid composition based on different gene and metabolite levels, elucidate the physiological mechanisms in response to abiotic stresses, and explain intriguing biological processes in oil palm. This paper summarizes the current status of oil palm research from a multi-omics perspective and hopes to provide a reference for further in-depth research on oil palm.
Collapse
Affiliation(s)
- Wen Xu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Ruimin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Mingming Hou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Shuanghong Cheng
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| |
Collapse
|
4
|
John Martin JJ, Song Y, Hou M, Zhou L, Liu X, Li X, Fu D, Li Q, Cao H, Li R. Multi-Omics Approaches in Oil Palm Research: A Comprehensive Review of Metabolomics, Proteomics, and Transcriptomics Based on Low-Temperature Stress. Int J Mol Sci 2024; 25:7695. [PMID: 39062936 PMCID: PMC11277459 DOI: 10.3390/ijms25147695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Oil palm (Elaeis guineensis Jacq.) is a typical tropical oil crop with a temperature of 26-28 °C, providing approximately 35% of the total world's vegetable oil. Growth and productivity are significantly affected by low-temperature stress, resulting in inhibited growth and substantial yield losses. To comprehend the intricate molecular mechanisms underlying the response and acclimation of oil palm under low-temperature stress, multi-omics approaches, including metabolomics, proteomics, and transcriptomics, have emerged as powerful tools. This comprehensive review aims to provide an in-depth analysis of recent advancements in multi-omics studies on oil palm under low-temperature stress, including the key findings from omics-based research, highlighting changes in metabolite profiles, protein expression, and gene transcription, as well as including the potential of integrating multi-omics data to reveal novel insights into the molecular networks and regulatory pathways involved in the response to low-temperature stress. This review also emphasizes the challenges and prospects of multi-omics approaches in oil palm research, providing a roadmap for future investigations. Overall, a better understanding of the molecular basis of the response of oil palm to low-temperature stress will facilitate the development of effective breeding and biotechnological strategies to improve the crop's resilience and productivity in changing climate scenarios.
Collapse
Affiliation(s)
- Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yuqiao Song
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mingming Hou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Dengqiang Fu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qihong Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
5
|
Zhou L, John Martin JJ, Li R, Zeng X, Wu Q, Li Q, Fu D, Li X, Liu X, Ye J, Cao H. Catalase (CAT) Gene Family in Oil Palm ( Elaeis guineensis Jacq.): Genome-Wide Identification, Analysis, and Expression Profile in Response to Abiotic Stress. Int J Mol Sci 2024; 25:1480. [PMID: 38338758 PMCID: PMC10855858 DOI: 10.3390/ijms25031480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qihong Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Dengqiang Fu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jianqiu Ye
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (J.J.J.M.); (R.L.); (X.Z.); (Q.W.); (Q.L.); (D.F.); (X.L.); (X.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
6
|
Wang L, Doan PPT, Chuong NN, Lee HY, Kim JH, Kim J. Comprehensive transcriptomic analysis of age-, dark-, and salt-induced senescence reveals underlying mechanisms and key regulators of leaf senescence in Zoysia japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1170808. [PMID: 37324695 PMCID: PMC10265201 DOI: 10.3389/fpls.2023.1170808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 06/17/2023]
Abstract
The lawn grass Zoysia japonica is widely cultivated for its ornamental and recreational value. However, its green period is subject to shortening, which significantly decreases the economic value of Z. japonica, especially for large cultivations. Leaf senescence is a crucial biological and developmental process that significantly influences the lifespan of plants. Moreover, manipulation of this process can improve the economic value of Z. japonica by extending its greening period. In this study, we conducted a comparative transcriptomic analysis using high-throughput RNA sequencing (RNA-seq) to investigate early senescence responses triggered by age, dark, and salt. Gene set enrichment analysis results indicated that while distinct biological processes were involved in each type of senescence response, common processes were also enriched across all senescence responses. The identification and validation of differentially expressed genes (DEGs) via RNA-seq and quantitative real-time PCR provided up- and down-regulated senescence markers for each senescence and putative senescence regulators that trigger common senescence pathways. Our findings revealed that the NAC, WRKY, bHLH, and ARF transcription factor (TF) groups are major senescence-associated TF families that may be required for the transcriptional regulation of DEGs during leaf senescence. In addition, we experimentally validated the senescence regulatory function of seven TFs including ZjNAP, ZjWRKY75, ZjARF2, ZjNAC1, ZjNAC083, ZjARF1, and ZjPIL5 using a protoplast-based senescence assay. This study provides new insight into the molecular mechanisms underlying Z. japonica leaf senescence and identifies potential genetic resources for enhancing its economic value by prolonging its green period.
Collapse
Affiliation(s)
- Lanshuo Wang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
7
|
Integrative Omics Analysis of Three Oil Palm Varieties Reveals (Tanzania × Ekona) TE as a Cold-Resistant Variety in Response to Low-Temperature Stress. Int J Mol Sci 2022; 23:ijms232314926. [PMID: 36499255 PMCID: PMC9740226 DOI: 10.3390/ijms232314926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Oil palm (Elaeis guineensis Jacq.) is an economically important tropical oil crop widely cultivated in tropical zones worldwide. Being a tropical crop, low-temperature stress adversely affects the oil palm. However, integrative leaf transcriptomic and proteomic analyses have not yet been conducted on an oil palm crop under cold stress. In this study, integrative omics transcriptomic and iTRAQ-based proteomic approaches were employed for three oil palm varieties, i.e., B × E (Bamenda × Ekona), O × G (E. oleifera × Elaeis guineensis), and T × E (Tanzania × Ekona), in response to low-temperature stress. In response to low-temperature stress at (8 °C) for 5 days, a total of 5175 up- and 2941 downregulated DEGs in BE-0_VS_BE-5, and a total of 3468 up- and 2443 downregulated DEGs for OG-0_VS_OG-5, and 3667 up- and 2151 downregulated DEGs for TE-0_VS_TE-5 were identified. iTRAQ-based proteomic analysis showed 349 up- and 657 downregulated DEPs for BE-0_VS_BE-5, 372 up- and 264 downregulated DEPs for OG-0_VS_OG-5, and 500 up- and 321 downregulated DEPs for TE-0_VS_TE-5 compared to control samples treated at 28 °C and 8 °C, respectively. The KEGG pathway correlation of oil palm has shown that the metabolic synthesis and biosynthesis of secondary metabolites pathways were significantly enriched in the transcriptome and proteome of the oil palm varieties. The correlation expression pattern revealed that TE-0_VS_TE-5 is highly expressed and BE-0_VS_BE-5 is suppressed in both the transcriptome and proteome in response to low temperature. Furthermore, numerous transcription factors (TFs) were found that may regulate cold acclimation in three oil palm varieties at low temperatures. Moreover, this study identified proteins involved in stresses (abiotic, biotic, oxidative, and heat shock), photosynthesis, and respiration in iTRAQ-based proteomic analysis of three oil palm varieties. The increased abundance of stress-responsive proteins and decreased abundance of photosynthesis-related proteins suggest that the TE variety may become cold-resistant in response to low-temperature stress. This study may provide a basis for understanding the molecular mechanism for the adaptation of oil palm varieties in response to low-temperature stress in China.
Collapse
|
8
|
Dong B, Zheng Z, Zhong S, Ye Y, Wang Y, Yang L, Xiao Z, Fang Q, Zhao H. Integrated Transcriptome and Metabolome Analysis of Color Change and Low-Temperature Response during Flowering of Prunus mume. Int J Mol Sci 2022; 23:12831. [PMID: 36361622 PMCID: PMC9658476 DOI: 10.3390/ijms232112831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 10/07/2023] Open
Abstract
In China, Prunus mume is a famous flowering tree that has been cultivated for 3000 years. P. mume grows in tropical and subtropical regions, and most varieties lack cold resistance; thus, it is necessary to study the low-temperature response mechanism of P. mume to expand the scope of its cultivation. We used the integrated transcriptomic and metabolomic analysis of a cold-resistant variety of P. mume 'Meiren', to identify key genes and metabolites associated with low temperatures during flowering. The 'Meiren' cultivar responded in a timely manner to temperature by way of a low-temperature signal transduction pathway. After experiencing low temperatures, the petals fade and wilt, resulting in low ornamental value. At the same time, in the cold response pathway, the activities of related transcription factors up- or downregulate genes and metabolites related to low temperature-induced proteins, osmotic regulators, protective enzyme systems, and biosynthesis and metabolism of sugars and acids. Our findings promote research on the adaptation of P. mume to low temperatures during wintering and early flowering for domestication and breeding.
Collapse
Affiliation(s)
- Bin Dong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| | - Zifei Zheng
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shiwei Zhong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| | - Yong Ye
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yiguang Wang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| | - Liyuan Yang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| | - Zheng Xiao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| | - Qiu Fang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| | - Hongbo Zhao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| |
Collapse
|
9
|
Zhang J, An H, Zhang X, Xu F, Zhou B. Transcriptomic Analysis Reveals Potential Gene Regulatory Networks Under Cold Stress of Loquat ( Eriobotrya japonica Lindl.). FRONTIERS IN PLANT SCIENCE 2022; 13:944269. [PMID: 35937353 PMCID: PMC9354853 DOI: 10.3389/fpls.2022.944269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 05/02/2023]
Abstract
Loquat (Eriobotrya japonica Lindl. ) is one of the most economically important evergreen fruit crops in China, while it often suffered the injury of cold stress in winter and earlier spring, and the annual yield loss of loquat fruits caused by cold or freezing stress was immeasurable. However, knowledge about the physiological response and molecular mechanism under cold stress is still limited. To investigate the potential regulation mechanism pre- and post-cold stress in loquat and the changes in physiological indicators, a comparative transcriptome analysis was performed against a cold-resistant cv. "Huoju" and a cold-sensitive cv. "Ninghaibai". The results of physiological indicators related to cold resistance indicated that rachis was most sensitive to cold stress and was considered as the representative organ to directly evaluate cold resistance of loquat based on subordinate function analysis. Here, we compared the transcriptome profiles of rachis pre- and under cold stress in "Huoju" and "Ninghaibai". A total of 4,347 and 3,513 differentially expressed genes (DEGs) were detected in "Ninghaibai" and "Huoju", among which 223 and 166 were newly identified genes, respectively, most of them were functionally enriched in plant hormone signal transduction (Huoju: 142; Ninghaibai: 200), and there were higher plant hormone content and related DEG expression levels in "Huoju" than that of "Ninghaibai". Moreover, a total of 3,309 differentially expressed transcription factors (DETFs) were identified, and some DEGs and DETFs were screened to be subjected to co-expression network analysis based on the gene expression profile data. Some candidate DEGs, including UDP-glycosyltransferase (UGT), glycosyltransferase (GT), sugar phosphate/phosphate translocator (SPT), sugar transport protein (STP), proline-rich receptor-like protein kinase (PERK), and peroxidise (POD), were significantly affected by cold stress, and the expression level of these genes obtained from real-time quantitative RT-PCR was consistent with the pattern of transcriptome profile, which suggested that these genes might play the vital roles in cold resistance of loquat. Our results provide an invaluable resource for the identification of specific genes and TFs and help to clarify gene transcription during the cold stress response of loquat.
Collapse
Affiliation(s)
- Jiaying Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haishan An
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xueying Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Fangjie Xu
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Boqiang Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Li S, Cheng Z, Dong S, Li Z, Zou L, Zhao P, Guo X, Bao Y, Wang W, Peng M. Global identification of full-length cassava lncRNAs unveils the role of cold-responsive intergenic lncRNA 1 in cold stress response. PLANT, CELL & ENVIRONMENT 2022; 45:412-426. [PMID: 34855989 DOI: 10.1111/pce.14236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 05/24/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been considered to be important regulators of gene expression in a range of biological processes in plants. A large number of lncRNAs have been identified in plants. However, most of their biological functions still remain to be determined. Here, we identified a total of 3004 lncRNAs in cassava under normal or cold-treated conditions from Iso-seq data. We further characterized a cold-responsive intergenic lncRNA 1 (CRIR1) as a novel positive regulator of the plant response to cold stress. CRIR1 can be significantly induced by cold treatment. Ectopic expression of CRIR1 in cassava enhanced the cold tolerance of transgenic plants. Transcriptome analysis demonstrated that CRIR1 regulated a range of cold stress-related genes in a CBF-independent pathway. We further found that CRIR1 RNA can interact with cassava cold shock protein 5 (MeCSP5), which acts as an RNA chaperone, indicating that CRIR1 may recruit MeCSP5 to improve the translation efficiency of messenger RNA. In summary, our study extends the repertoire of lncRNAs in plants as well as their role in cold stress responses. Moreover, it reveals a mechanism by which CRIR1 affected cold stress response by modulating the expression of stress-responsive genes and increasing their translational yield.
Collapse
Affiliation(s)
- Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shiman Dong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhibo Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xin Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yan Bao
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenquan Wang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
11
|
Wei L, John Martin JJ, Zhang H, Zhang R, Cao H. Problems and Prospects of Improving Abiotic Stress Tolerance and Pathogen Resistance of Oil Palm. PLANTS 2021; 10:plants10122622. [PMID: 34961092 PMCID: PMC8704689 DOI: 10.3390/plants10122622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/03/2022]
Abstract
Oil palm crops are the most important determinant of the agricultural economy within the segment of oilseed crops. Oil palm growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic that limit crop productivity and are major constraints to meeting global food demands. The stress-tolerant oil palm crops that mitigate the effects of abiotic stresses on crop productivity are crucially needed to sustain agricultural production. Basal stem rot threatens the development of the industry, and the key to solving the problem is to breed new oil palm varieties resistant to adversity. This has created a need for genetic improvement which involves evaluation of germplasm, pest and disease resistance, earliness and shattering resistance, quality of oil, varieties for different climatic conditions, etc. In recent years, insights into physiology, molecular biology, and genetics have significantly enhanced our understanding of oil palm response towards such stimuli as well as the reason for varietal diversity in tolerance. In this review, we explore the research progress, existing problems, and prospects of oil palm stress resistance-based physiological mechanisms of stress tolerance as well as the genes and metabolic pathways that regulate stress response.
Collapse
Affiliation(s)
- Lu Wei
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Haiqing Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Ruining Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
- Correspondence:
| |
Collapse
|
12
|
Samarina LS, Bobrovskikh AV, Doroshkov AV, Malyukova LS, Matskiv AO, Rakhmangulov RS, Koninskaya NG, Malyarovskaya VI, Tong W, Xia E, Manakhova KA, Ryndin AV, Orlov YL. Comparative Expression Analysis of Stress-Inducible Candidate Genes in Response to Cold and Drought in Tea Plant [ Camellia sinensis (L.) Kuntze]. Front Genet 2020; 11:611283. [PMID: 33424935 PMCID: PMC7786056 DOI: 10.3389/fgene.2020.611283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Cold and drought are two of the most severe threats affecting the growth and productivity of the tea plant, limiting its global spread. Both stresses cause osmotic changes in the cells of the tea plant by decreasing their water potential. To develop cultivars that are tolerant to both stresses, it is essential to understand the genetic responses of tea plant to these two stresses, particularly in terms of the genes involved. In this study, we combined literature data with interspecific transcriptomic analyses (using Arabidopsis thaliana and Solanum lycopersicum) to choose genes related to cold tolerance. We identified 45 stress-inducible candidate genes associated with cold and drought responses in tea plants based on a comprehensive homologous detection method. Of these, nine were newly characterized by us, and 36 had previously been reported. The gene network analysis revealed upregulated expression in ICE1-related cluster of bHLH factors, HSP70/BAM5 connected genes (hexokinases, galactinol synthases, SnRK complex, etc.) indicating their possible co-expression. Using qRT-PCR we revealed that 10 genes were significantly upregulated in response to both cold and drought in tea plant: HSP70, GST, SUS1, DHN1, BMY5, bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3. SnRK1.2, HXK1/2, bHLH7/43/79/93 were specifically upregulated in cold, while RHL41, CAU1, Hydrolase22 were specifically upregulated in drought. Interestingly, the expression of CIP was higher in the recovery stage of both stresses, indicating its potentially important role in plant recovery after stress. In addition, some genes, such as DHN3, bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22, were significantly positively correlated between the cold and drought responses. CBF1, GOLS1, HXK2, and HXK3, by contrast, showed significantly negative correlations between the cold and drought responses. Our results provide valuable information and robust candidate genes for future functional analyses intended to improve the stress tolerance of the tea plant and other species.
Collapse
Affiliation(s)
- Lidiia S Samarina
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexandr V Bobrovskikh
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Institute Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey V Doroshkov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Institute Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lyudmila S Malyukova
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexandra O Matskiv
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Ruslan S Rakhmangulov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Natalia G Koninskaya
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Valentina I Malyarovskaya
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Karina A Manakhova
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexey V Ryndin
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Yuriy L Orlov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
13
|
Samarina L, Matskiv A, Simonyan T, Koninskaya N, Malyarovskaya V, Gvasaliya M, Malyukova L, Tsaturyan G, Mytdyeva A, Martinez-Montero ME, Choudhary R, Ryndin A. Biochemical and Genetic Responses of Tea ( Camellia sinensis (L.) Kuntze) Microplants under Mannitol-Induced Osmotic Stress In Vitro. PLANTS 2020; 9:plants9121795. [PMID: 33348920 PMCID: PMC7766420 DOI: 10.3390/plants9121795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Osmotic stress is a major factor reducing the growth and yield of many horticultural crops worldwide. To reveal reliable markers of tolerant genotypes, we need a comprehensive understanding of the responsive mechanisms in crops. In vitro stress induction can be an efficient tool to study the mechanisms of responses in plants to help gain a better understanding of the physiological and genetic responses of plant tissues against each stress factor. In the present study, the osmotic stress was induced by addition of mannitol into the culture media to reveal biochemical and genetic responses of tea microplants. The contents of proline, threonine, epigallocatechin, and epigallocatechin gallate were increased in leaves during mannitol treatment. The expression level of several genes, namely DHN2, LOX1, LOX6, BAM, SUS1, TPS11, RS1, RS2, and SnRK1.3, was elevated by 2–10 times under mannitol-induced osmotic stress, while the expression of many other stress-related genes was not changed significantly. Surprisingly, down-regulation of the following genes, viz. bHLH12, bHLH7, bHLH21, bHLH43, CBF1, WRKY2, SWEET1, SWEET2, SWEET3, INV5, and LOX7, was observed. During this study, two major groups of highly correlated genes were observed. The first group included seven genes, namely CBF1, DHN3, HXK2,SnRK1.1, SPS, SWEET3, and SWEET1. The second group comprised eight genes, viz. DHN2, SnRK1.3, HXK3, RS1, RS2,LOX6, SUS4, and BAM5. A high level of correlation indicates the high strength connection of the genes which can be co-expressed or can be linked to the joint regulons. The present study demonstrates that tea plants develop several adaptations to cope under osmotic stress in vitro; however, some important stress-related genes were silent or downregulated in microplants.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
- Correspondence: ; Tel.: +79-66-7709038
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Taisiya Simonyan
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Natalia Koninskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Valentina Malyarovskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Maya Gvasaliya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Gregory Tsaturyan
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Alfiya Mytdyeva
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Marcos Edel Martinez-Montero
- Department of Plant Breeding and Plant Conservation, Bioplantas Center, University of Ciego de Avila, Ciego de Avila 65200, Cuba;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| |
Collapse
|