1
|
Testa G, Giannelli S, Staurenghi E, Cecci R, Floro L, Gamba P, Sottero B, Leonarduzzi G. The Emerging Role of PCSK9 in the Pathogenesis of Alzheimer's Disease: A Possible Target for the Disease Treatment. Int J Mol Sci 2024; 25:13637. [PMID: 39769398 PMCID: PMC11727734 DOI: 10.3390/ijms252413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly caused by β-amyloid (Aβ) accumulation in the brain. Among the several factors that may concur to AD development, elevated cholesterol levels and brain cholesterol dyshomeostasis have been recognized to play a relevant role. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein primarily known to regulate plasma low-density lipoproteins (LDLs) rich in cholesterol and to be one of the main causes of familial hypercholesterolemia. In addition to that, PCSK9 is also recognized to carry out diverse important activities in the brain, including control of neuronal differentiation, apoptosis, and, importantly, LDL receptors functionality. Moreover, PCSK9 appeared to be directly involved in some of the principal processes responsible for AD development, such as inflammation, oxidative stress, and Aβ deposition. On these bases, PCSK9 management might represent a promising approach for AD treatment. The purpose of this review is to elucidate the role of PCSK9, whether or not cholesterol-related, in AD pathogenesis and to give an updated overview of the most innovative therapeutic strategies developed so far to counteract the pleiotropic activities of both humoral and brain PCSK9, focusing in particular on their potentiality for AD management.
Collapse
Affiliation(s)
- Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
- Division of Neurology Vand Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Rebecca Cecci
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Lucrezia Floro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| |
Collapse
|
2
|
Nee Shelly Aggarwal SS, Kaur D, Saluja D, Srivastava K. Repurposed drugs as PCSK9-LDLR disruptors for lipid lowering and cardiovascular disease therapeutics. Mol Divers 2024:10.1007/s11030-024-11063-9. [PMID: 39645639 DOI: 10.1007/s11030-024-11063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
The PCSK9 protein binds to LDL receptors (LDLR), leading to their degradation and reduced expression on cell surfaces. This decreased the clearance of LDL cholesterol from the bloodstream, thereby increasing the risk of coronary artery diseases. Targeting the PCSK9-LDL receptor interaction is crucial for regulating LDL cholesterol levels and preventing cardiovascular disease. This study aims to screen low molecular weight inhibitors to disrupt the PCSK9-LDLR interaction. We employed a comprehensive approach combining high-throughput virtual screening of DrugBank database, followed by molecular docking studies using CDOCKER and flexible docking methods. The top four lead compounds were further validated through molecular dynamics (MD) simulations and binding free energy calculations using MM-PBSA. Finally, the in vitro assay confirmed that Benazepril and Quinapril exhibited the highest potency as PCSK9-LDLR disruptors among the top candidates. These lead compounds have the potential to be repurposed as lipid-lowering agents for the treatment of cardiovascular diseases, offering a promising therapeutic strategy.
Collapse
Affiliation(s)
| | - Divpreet Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Kamna Srivastava
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
3
|
Grosche P, Flyer AN, Gattlen R, Xu M, Golosov AA, Vera V, Pickett S, Brousseau ME, Chopra R, Clairmont KB, Koch A, Liu E, Reid P, Perry L, Yang L, Yang Q, Monovich LG. Discovery of Truncated Cyclic Peptides Targeting an Induced-Fit Pocket on PCSK9. ChemMedChem 2024; 19:e202400208. [PMID: 39437016 DOI: 10.1002/cmdc.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Indexed: 10/25/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting hepatic LDL receptor (LDL-R) degradation. We previously identified and optimized 13-mer cyclic peptides that bind to a novel, induced-fit pocket adjacent to the binding interface of PCSK9 and LDL-R and effectively disrupted the PCSK9/LDL-R protein-protein interaction (PPI) both in vitro and in vivo. However this series of large cyclic peptides required charged groups for function and lacked oral bioavailability in rodents. We describe herein multiple structure-based modifications to these original peptides to yield truncated, neutral molecules with full PPI function in both biochemical and cellular assays. In parallel, new mRNA-peptide display screens identified non-functional 8- and 9-mer compounds which ligand the induced-fit pocket in a distinct manner. Taken together, these studies indicate multiple directions to reduce the size and complexity of this peptide class toward a true small molecule oral agent.
Collapse
Affiliation(s)
- Philipp Grosche
- Novartis Biomedical Research, Fabrikstrasse 2, Novartis Campus, 4056, Basel, Switzerland
| | - Alec N Flyer
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Raphael Gattlen
- Novartis Biomedical Research, Fabrikstrasse 2, Novartis Campus, 4056, Basel, Switzerland
| | - Mei Xu
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Andrei A Golosov
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Victoria Vera
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephanie Pickett
- Novartis Biomedical Research, Fabrikstrasse 2, Novartis Campus, 4056, Basel, Switzerland
| | - Margaret E Brousseau
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Rajiv Chopra
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Kevin B Clairmont
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Alexander Koch
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Eugene Liu
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Patrick Reid
- PeptiDream, Inc., KOL Building, Room 405, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8904, Japan
| | - Lauren Perry
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lihua Yang
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Qing Yang
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lauren G Monovich
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Maliwal D, Pissurlenkar RRS, Telvekar V. Comprehensive computational study in the identification of novel potential cholesterol lowering agents targeting proprotein convertase subtilisin/kexin type 9. J Biomol Struct Dyn 2024; 42:4656-4667. [PMID: 37309035 DOI: 10.1080/07391102.2023.2222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
The enzymatic target proprotein convertase subtilisin/kexin type 9 (PCSK9) is critically involved in the regulation of the lipoprotein metabolism leading to the degradation of low-density lipoprotein receptors (LDLRs) upon binding. Drugs that lower LDL cholesterol (LDL-C) through the inhibition of PCSK9 are useful in the management of hypercholesterolemia which greatly reduces the associated risk of atherosclerotic cardiovascular disease (CVD). In 2015, anti-PCSK9 monoclonal antibodies (mAbs), alirocumab and evolocumab were approved but owing to their high costs their prior authorization practices were impeded, reducing their long-term adherence. This has drawn considerable attention for the development of small-molecule PCSK9 inhibitors. In this research work, novel and diverse molecules with affinity towards PCSK9 thereby having ability to lower cholesterol. A hierarchical multistep docking was implemented to identify small molecules from chemical libraries with a score cutoff -8.00 kcal/mol, thereby weeding all the non-potential molecules. A set of seven representative molecules Z1139749023, Z1142698190, Z2242867634, Z2242893449, Z2242894417, Z2242909019, and Z2242914794 have been identified from a comprehensive computational study which included assessment of pharmacokinetics and toxicity profiles and binding interactions along with in-depth analysis of structural dynamics and integrity using prolong molecular dynamics (MD) simulation (in-duplicate). Furthermore the binding affinity of these PCSK9 inhibitory candidates molecules was ascertained over 1000 trajectory frames using MM-GBSA calculations. The molecules reported herein are propitious candidates for further development through necessary experimental considerations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | | | - Vikas Telvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
5
|
Ebrahimi M, Alijanianzadeh M. Evaluation of the interaction between potent small molecules against the Nipah virus Glycoprotein in Malaysia and Bangladesh strains, accompanied by the human Ephrin-B2 and Ephrin-B3 receptors; a simulation approach. Mol Divers 2024; 28:851-874. [PMID: 36808582 PMCID: PMC9939871 DOI: 10.1007/s11030-023-10624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Malaysia reported the first human case of Nipah virus (NiV) in late September 1998 with encephalitis and respiratory symptoms. As a result of viral genomic mutations, two main strains (NiV-Malaysia and NiV-Bangladesh) have spread around the world. There are no licensed molecular therapeutics available for this biosafety level 4 pathogen. NiV attachment glycoprotein plays a critical role in viral transmission through its human receptors (Ephrin-B2 and Ephrin-B3), so identifying small molecules that can be repurposed to inhibit them is crucial to developing anti-NiV drugs. Consequently, in this study annealing simulations, pharmacophore modeling, molecular docking, and molecular dynamics were used to evaluate seven potential drugs (Pemirolast, Nitrofurantoin, Isoniazid Pyruvate, Eriodictyol, Cepharanthine, Ergoloid, and Hypericin) against NiV-G, Ephrin-B2, and Ephrin-B3 receptors. Based on the annealing analysis, Pemirolast for efnb2 protein and Isoniazid Pyruvate for efnb3 receptor were repurposed as the most promising small molecule candidates. Furthermore, Hypericin and Cepharanthine, with notable interaction values, are the top Glycoprotein inhibitors in Malaysia and Bangladesh strains, respectively. In addition, docking calculations revealed that their binding affinity scores are related to efnb2-pem (- 7.1 kcal/mol), efnb3-iso (- 5.8 kcal/mol), gm-hyp (- 9.6 kcal/mol), gb-ceph (- 9.2 kcal/mol). Finally, our computational research minimizes the time-consuming aspects and provides options for dealing with any new variants of Nipah virus that might emerge in the future.
Collapse
Affiliation(s)
- Maryam Ebrahimi
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahdi Alijanianzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
6
|
Coppinger C, Pomales B, Movahed MR, Marefat M, Hashemzadeh M. Berberine: A Multi-Target Natural PCSK9 Inhibitor with the Potential to Treat Diabetes, Alzheimer's, Cancer and Cardiovascular Disease. Curr Rev Clin Exp Pharmacol 2024; 19:312-326. [PMID: 38361373 DOI: 10.2174/0127724328250471231222094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024]
Abstract
Berberine is a natural product with a wide range of pharmacological effects. It has antimicrobial, anti-cancer, anti-inflammatory, anti-hyperlipidemic, neuroprotective, and cholesterollowering properties, among others. It has been used in traditional Chinese and Ayurvedic medicine for 3000 years and is generally well-tolerated with few side effects. Its main drawback is low oral bioavailability, which has hindered widespread clinical use. However, recent interest has surged with the emergence of evidence that berberine is effective in treating cancer, diabetes, Alzheimer's disease, and cardiovascular disease via multiple mechanisms. It enhances insulin sensitivity and secretion by pancreatic β-cells in Type 2 Diabetes Mellitus in addition to reducing pro-inflammatory cytokines such as IL-6, IL-1β, TLR4 and TNF-α. These cytokines are elevated in Alzheimer's disease, cardiovascular disease, and diabetes. Reductions in pro-inflammatory cytokine levels are associated with positive outcomes such as improved cognition, reduced cardiovascular events, and improved glucose metabolism and insulin sensitivity. Berberine is a natural PCSK9 inhibitor, which contributes to its hypolipidemic effects. It also increases low-density lipoprotein receptor expression, reduces intestinal cholesterol absorption, and promotes cholesterol excretion from the liver to the bile. This translates into a notable decrease in LDL cholesterol levels. High LDL cholesterol levels are associated with increased cardiovascular disease risk. Novel synthetic berberine derivatives are currently being developed that optimize LDL reduction, bioavailability, and other pharmacokinetic properties.
Collapse
Affiliation(s)
- Caroline Coppinger
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Briana Pomales
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mohammad Reza Movahed
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| | | | - Mehrnoosh Hashemzadeh
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| |
Collapse
|
7
|
Bryan DR, Kulp JL, Mahapatra MK, Bryan RL, Viswanathan U, Carlisle MN, Kim S, Schutte WD, Clarke KV, Doan TT, Kulp JL. BMaps: A Web Application for Fragment-Based Drug Design and Compound Binding Evaluation. J Chem Inf Model 2023; 63:4229-4236. [PMID: 37406353 DOI: 10.1021/acs.jcim.3c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Fragment-based drug design uses data about where, and how strongly, small chemical fragments bind to proteins, to assemble new drug molecules. Over the past decade, we have been successfully using fragment data, derived from thermodynamically rigorous Monte Carlo fragment-protein binding simulations, in dozens of preclinical drug programs. However, this approach has not been available to the broader research community because of the cost and complexity of doing simulations and using design tools. We have developed a web application, called BMaps, to make fragment-based drug design widely available with greatly simplified user interfaces. BMaps provides access to a large repository (>550) of proteins with 100s of precomputed fragment maps, druggable hot spots, and high-quality water maps. Users can also employ their own structures or those from the Protein Data Bank and AlphaFold DB. Multigigabyte data sets are searched to find fragments in bondable orientations, ranked by a binding-free energy metric. The designers use this to select modifications that improve affinity and other properties. BMaps is unique in combining conventional tools such as docking and energy minimization with fragment-based design, in a very easy to use and automated web application. The service is available at https://www.boltzmannmaps.com.
Collapse
Affiliation(s)
- Daniel R Bryan
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - John L Kulp
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Zymergen, Inc., 430 E. 29th Street, Suite 625, New York, New York 10016, United States
| | - Manoj K Mahapatra
- Kanak Manjari Institute of Pharmaceutical Sciences, Rourkela 769015, Odisha, India
| | - Richard L Bryan
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Usha Viswanathan
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Micah N Carlisle
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Surim Kim
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Zymergen, Inc., 430 E. 29th Street, Suite 625, New York, New York 10016, United States
| | - William D Schutte
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Kevaughn V Clarke
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Tony T Doan
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - John L Kulp
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
8
|
Bagdanoff JT, Smith TM, Allan M, O'Donnell P, Nguyen Z, Moore EA, Baird J, Wang S, Subramanian V, Tigani B, Nettleton DO, Monovich LG, Lewis I, Flyer AN, Granda B, Blankenship JW, Barnes-Seeman D, Clairmont KB. Clearance of plasma PCSK9 via the asialoglycoprotein receptor mediated by heterobifunctional ligands. Cell Chem Biol 2023; 30:97-109.e9. [PMID: 36626903 DOI: 10.1016/j.chembiol.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of hepatic LDL receptors (LDLRs). Current therapeutic approaches use antibodies that disrupt PCSK9 binding to LDLR to reduce circulating LDL-C concentrations or siRNA that reduces PCSK9 synthesis and thereby levels in circulation. Recent reports describe small molecules that, like therapeutic antibodies, interfere with PCSK9 binding to LDLR. We report an alternative approach to decrease circulating PCSK9 levels by accelerating PCSK9 clearance and degradation using heterobifunctional molecules that simultaneously bind to PCSK9 and the asialoglycoprotein receptor (ASGPR). Various formats, including bispecific antibodies, antibody-small molecule conjugates, and heterobifunctional small molecules, demonstrate binding in vitro and accelerated PCSK9 clearance in vivo. These molecules showcase a new approach to PCSK9 inhibition, targeted plasma protein degradation (TPPD), and demonstrate the feasibility of heterobifunctional small molecule ligands to accelerate the clearance and degradation of pathogenic proteins in circulation.
Collapse
Affiliation(s)
- Jeffrey T Bagdanoff
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Thomas M Smith
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Martin Allan
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Peter O'Donnell
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Zachary Nguyen
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Elizabeth A Moore
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jason Baird
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shuangxi Wang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Vanitha Subramanian
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Bruno Tigani
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2 Novartis Campus, CH-4056 Basel, Switzerland
| | - David O Nettleton
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren G Monovich
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ian Lewis
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alec N Flyer
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brian Granda
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - John W Blankenship
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David Barnes-Seeman
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kevin B Clairmont
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Ahamad S, Mathew S, Khan WA, Mohanan K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov Today 2022; 27:1332-1349. [PMID: 35121175 DOI: 10.1016/j.drudis.2022.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Abstract
When secreted into the circulation, proprotein convertase subtilisin kexin type 9 (PCSK9) blocks the low-density lipoprotein receptors (LDL-R) and, as a consequence, low-density lipoprotein cholesterol (LDL-C) levels increase. Therefore, PCSK9 has emerged as a potential therapeutic target for lowering LDL-C levels and preventing atherosclerosis. The US Food and Drug Administration (FDA) has approved two monoclonal antibodies (mAbs) against PCSK9, but the expensive manufacturing process limits their use. Subsequently, there have been tremendous efforts to develop cost-effective small molecules specific to PCSK9 over the past few years. These small molecules are promising therapeutics that act by preventing the synthesis of PCSK9, its secretion from cells, or the PCSK9-LDRL interaction. In this review, we summarize recent developments in the discovery of small-molecule PCSK9 inhibitors, focusing on their design, therapeutic effects, specific targets, and mechanisms of action.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 UP, India.
| | - Shintu Mathew
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow, 226031 UP, India
| | - Waqas A Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 UP, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow, 226031 UP, India.
| |
Collapse
|
10
|
Brousseau ME, Clairmont KB, Spraggon G, Flyer AN, Golosov AA, Grosche P, Amin J, Andre J, Burdick D, Caplan S, Chen G, Chopra R, Ames L, Dubiel D, Fan L, Gattlen R, Kelly-Sullivan D, Koch AW, Lewis I, Li J, Liu E, Lubicka D, Marzinzik A, Nakajima K, Nettleton D, Ottl J, Pan M, Patel T, Perry L, Pickett S, Poirier J, Reid PC, Pelle X, Seepersaud M, Subramanian V, Vera V, Xu M, Yang L, Yang Q, Yu J, Zhu G, Monovich LG. Identification of a PCSK9-LDLR disruptor peptide with in vivo function. Cell Chem Biol 2021; 29:249-258.e5. [PMID: 34547225 DOI: 10.1016/j.chembiol.2021.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting hepatic LDL receptor (LDLR) degradation. Therapeutic antibodies that disrupt PCSK9-LDLR binding reduce LDL-C concentrations and cardiovascular disease risk. The epidermal growth factor precursor homology domain A (EGF-A) of the LDLR serves as a primary contact with PCSK9 via a flat interface, presenting a challenge for identifying small molecule PCSK9-LDLR disruptors. We employ an affinity-based screen of 1013in vitro-translated macrocyclic peptides to identify high-affinity PCSK9 ligands that utilize a unique, induced-fit pocket and partially disrupt the PCSK9-LDLR interaction. Structure-based design led to molecules with enhanced function and pharmacokinetic properties (e.g., 13PCSK9i). In mice, 13PCSK9i reduces plasma cholesterol levels and increases hepatic LDLR density in a dose-dependent manner. 13PCSK9i functions by a unique, allosteric mechanism and is the smallest molecule identified to date with in vivo PCSK9-LDLR disruptor function.
Collapse
Affiliation(s)
- Margaret E Brousseau
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Kevin B Clairmont
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Alec N Flyer
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrei A Golosov
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Philipp Grosche
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Jakal Amin
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jerome Andre
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Debra Burdick
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shari Caplan
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Guanjing Chen
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Raj Chopra
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lisa Ames
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Diana Dubiel
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Li Fan
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Raphael Gattlen
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Dawn Kelly-Sullivan
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander W Koch
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ian Lewis
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Jingzhou Li
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Eugene Liu
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Danuta Lubicka
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andreas Marzinzik
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Katsumasa Nakajima
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David Nettleton
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Meihui Pan
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tajesh Patel
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren Perry
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stephanie Pickett
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Jennifer Poirier
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Patrick C Reid
- PeptiDream, Inc., KOL Building, Room 405, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8904, Japan
| | - Xavier Pelle
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Mohindra Seepersaud
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Vanitha Subramanian
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Victoria Vera
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mei Xu
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lihua Yang
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qing Yang
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jinghua Yu
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Guoming Zhu
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren G Monovich
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Rakipovski G, Hovingh GK, Nyberg M. Proprotein convertase subtilisin/kexin type 9 inhibition as the next statin? Curr Opin Lipidol 2020; 31:340-346. [PMID: 33060383 DOI: 10.1097/mol.0000000000000718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Despite the wide use of statins and other LDL-cholesterol (LDL-C)-lowering therapies, atherosclerotic cardiovascular disease remains an important cause of mortality and morbidity. Here, we discuss efficacy, side effects and convenience of current and future therapies inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9). RECENT FINDINGS Clinical trials with mAbs administered every 2-4 weeks and small interfering RNAs given two to four times per year have consistently demonstrated substantial LDL-C-lowering (40-60%) and improved outcome when added to existing lipid-lowering therapies. Pleiotropic effects of PCSK9 inhibition are somewhat different from those observed with statin treatment as evidenced by reduced levels of triglycerides and lipoprotein(a) with no apparent effect on inflammatory markers in patients treated with PCSK9 inhibitors. Treatment with mAb and small interfering RNA are associated with a high-cost, however, small molecules and vaccines may improve cost and convenience if development of these are successful. SUMMARY PCSK9 inhibitors are currently considered to be an add-on therapy and whether these drugs will be used as stand-alone and/or as a first choice is dependent on clinical readouts from ongoing and future trials, real-world evidence, convenience and treatment costs.
Collapse
Affiliation(s)
| | - G Kees Hovingh
- Novo Nordisk A/S, Copenhagen, Denmark
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|