1
|
Salman A, Biziaev N, Shuvalova E, Alkalaeva E. mRNA context and translation factors determine decoding in alternative nuclear genetic codes. Bioessays 2024; 46:e2400058. [PMID: 38724251 DOI: 10.1002/bies.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The genetic code is a set of instructions that determine how the information in our genetic material is translated into amino acids. In general, it is universal for all organisms, from viruses and bacteria to humans. However, in the last few decades, exceptions to this rule have been identified both in pro- and eukaryotes. In this review, we discuss the 16 described alternative eukaryotic nuclear genetic codes and observe theories of their appearance in evolution. We consider possible molecular mechanisms that allow codon reassignment. Most reassignments in nuclear genetic codes are observed for stop codons. Moreover, in several organisms, stop codons can simultaneously encode amino acids and serve as termination signals. In this case, the meaning of the codon is determined by the additional factors besides the triplets. A comprehensive review of various non-standard coding events in the nuclear genomes provides a new insight into the translation mechanism in eukaryotes.
Collapse
Affiliation(s)
- Ali Salman
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
McGowan J, Kilias ES, Alacid E, Lipscombe J, Jenkins BH, Gharbi K, Kaithakottil GG, Macaulay IC, McTaggart S, Warring SD, Richards TA, Hall N, Swarbreck D. Identification of a non-canonical ciliate nuclear genetic code where UAA and UAG code for different amino acids. PLoS Genet 2023; 19:e1010913. [PMID: 37796765 PMCID: PMC10553269 DOI: 10.1371/journal.pgen.1010913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the "universal" genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel uncultured ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.
Collapse
Affiliation(s)
- Jamie McGowan
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Elisabet Alacid
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James Lipscombe
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Seanna McTaggart
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Sally D. Warring
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
3
|
Manjunath LE, Singh A, Som S, Eswarappa SM. Mammalian proteome expansion by stop codon readthrough. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1739. [PMID: 35570338 DOI: 10.1002/wrna.1739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
Abstract
Recognition of a stop codon by translation machinery as a sense codon results in translational readthrough instead of termination. This recoding process, termed stop codon readthrough (SCR) or translational readthrough, is found in all domains of life including mammals. The context of the stop codon, local mRNA topology, and molecules that interact with the mRNA region downstream of the stop codon determine SCR. The products of SCR can have localization, stability, and function different from those of the canonical isoforms. In this review, we discuss how recent technological and computational advances have increased our understanding of the SCR process in the mammalian system. Based on the known molecular events that occur during SCR of multiple mRNAs, we propose transient molecular roadblocks on an mRNA downstream of the stop codon as a possible mechanism for the induction of SCR. We argue, with examples, that the insights gained from the natural SCR events can guide us to develop novel strategies for the treatment of diseases caused by premature stop codons. This article is categorized under: Translation > Regulation.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Lombardi S, Testa MF, Pinotti M, Branchini A. Translation termination codons in protein synthesis and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:1-48. [PMID: 36088072 DOI: 10.1016/bs.apcsb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
5
|
Karki P, Carney TD, Maracci C, Yatsenko AS, Shcherbata HR, Rodnina MV. Tissue-specific regulation of translational readthrough tunes functions of the traffic jam transcription factor. Nucleic Acids Res 2021; 50:6001-6019. [PMID: 34897510 PMCID: PMC9226519 DOI: 10.1093/nar/gkab1189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Translational readthrough (TR) occurs when the ribosome decodes a stop codon as a sense codon, resulting in two protein isoforms synthesized from the same mRNA. TR has been identified in several eukaryotic organisms; however, its biological significance and mechanism remain unclear. Here, we quantify TR of several candidate genes in Drosophila melanogaster and characterize the regulation of TR in the large Maf transcription factor Traffic jam (Tj). Using CRISPR/Cas9-generated mutant flies, we show that the TR-generated Tj isoform is expressed in a subset of neural cells of the central nervous system and is excluded from the somatic cells of gonads. Control of TR in Tj is critical for preservation of neuronal integrity and maintenance of reproductive health. The tissue-specific distribution of a release factor splice variant, eRF1H, plays a critical role in modulating differential TR of leaky stop codon contexts. Fine-tuning of gene regulatory functions of transcription factors by TR provides a potential mechanism for cell-specific regulation of gene expression.
Collapse
Affiliation(s)
- Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Travis D Carney
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
6
|
Ho AT, Hurst LD. Effective Population Size Predicts Local Rates but Not Local Mitigation of Read-through Errors. Mol Biol Evol 2021; 38:244-262. [PMID: 32797190 PMCID: PMC7783166 DOI: 10.1093/molbev/msaa210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via "fail-safe" 3' additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Corresponding author: E-mail:
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
7
|
Molecular Insights into Determinants of Translational Readthrough and Implications for Nonsense Suppression Approaches. Int J Mol Sci 2020; 21:ijms21249449. [PMID: 33322589 PMCID: PMC7764779 DOI: 10.3390/ijms21249449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
The fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense and stop codons. However, premature termination codons (PTCs) arising from mutations may, at low frequency, be misrecognized and result in PTC suppression, named ribosome readthrough, with production of full-length proteins through the insertion of a subset of amino acids. Since some drugs have been identified as readthrough inducers, this fidelity drawback has been explored as a therapeutic approach in several models of human diseases caused by nonsense mutations. Here, we focus on the mechanisms driving translation in normal and aberrant conditions, the potential fates of mRNA in the presence of a PTC, as well as on the results obtained in the research of efficient readthrough-inducing compounds. In particular, we describe the molecular determinants shaping the outcome of readthrough, namely the nucleotide and protein context, with the latter being pivotal to produce functional full-length proteins. Through the interpretation of experimental and mechanistic findings, mainly obtained in lysosomal and coagulation disorders, we also propose a scenario of potential readthrough-favorable features to achieve relevant rescue profiles, representing the main issue for the potential translatability of readthrough as a therapeutic strategy.
Collapse
|
8
|
Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ. The Ongoing Quest to Crack the Genetic Code for Protein Production. Mol Cell 2020; 80:193-209. [PMID: 33010203 DOI: 10.1016/j.molcel.2020.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023]
Abstract
Understanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation. The influences of many contributing elements are intertwined, which complicates a full understanding of the individual factors. In natural genes, a functional balance between these factors has been obtained in the course of evolution, whereas for genetic-engineering projects, our incomplete understanding still limits optimal design of synthetic genes. However, notable advances have recently been made, supported by high-throughput analysis of synthetic gene libraries as well as by state-of-the-art biomolecular techniques. We discuss here how these advances further strengthen understanding of the gene expression process and how they can be harnessed to optimize protein production.
Collapse
Affiliation(s)
- Thijs Nieuwkoop
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Max Finger-Bou
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|