1
|
Rosales JJ, Brunner MB, Marin MS, Pérez SE. Biphasic modulation of the TLR7 signaling pathway in bovine alphaherpesvirus (BoAHV) infection of neural cells. Vet Microbiol 2025; 302:110424. [PMID: 39933441 DOI: 10.1016/j.vetmic.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
The study investigates the role of TLR7 in the modulation of the immune response during infection of neuronal cells by bovine alphaherpesvirus (BoAHV) types 1 and 5. TLR7 is essential for detecting viral RNA and activating immune pathways. In BoAHV-1 infection, TLR7 is upregulated early and persistently. In contrast, BoAHV-5 initially suppresses TLR7 expression, with a delayed upregulation at the end of the infectious cycle, reflecting the ability of the virus to evade early immune detection. Furthermore, BoAHV-1 induces a strong activation of MyD88 and NF-κB, leading to rapid viral replication, while BoAHV-5 triggers a weaker immune response, resulting in slower viral replication during the initial hours of infection. Additionally, BoAHV-1 progressively activates IRF-7 whereas BoAHV-5 shows delayed IRF-7 activation. Nevertheless, BoAHV-5 induces a strong IFNα/β response. The antiviral effect of the TLR7 agonist, Imiquimod was evident at the late phase of BoAHV-5 infection and it was mediated by IFN-β. These findings suggest that targeting TLR7 signaling could be a potential therapeutic approach to modulate immune responses and control viral replication. However, the effectiveness of TLR7 agonists like Imiquimod may vary depending on the virus type and its immune evasion strategies, highlighting the need for further research to explore other molecules in the TLR7 pathway.
Collapse
Affiliation(s)
- J J Rosales
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - M B Brunner
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - M S Marin
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S E Pérez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Narovlyansky A, Pronin A, Poloskov V, Sanin A, Mezentseva M, Fedyakina I, Suetina I, Zubashev I, Ershov F, Filimonova M, Surinova V, Volkova I, Bogdanov E. Expression of Toll-like Receptor Genes and Antiviral Cytokines in Macrophage-like Cells in Response to Indole-3-carboxylic Acid Derivative. Viruses 2024; 16:1718. [PMID: 39599833 PMCID: PMC11598892 DOI: 10.3390/v16111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Ongoing outbreaks and often rapid spread of infections caused by coronaviruses, influenza, Nipah, Dengue, Marburg, monkeypox, and other viruses are a concern for health authorities in most countries. Therefore, the search for and study of new antiviral compounds are in great demand today. Since almost all viruses with pandemic potential have immunotoxic properties of various origins, particular attention is paid to the search and development of immunomodulatory drugs. We have synthesised a new compound related to indole-3-carboxylic acid derivatives (hereinafter referred to as the XXV) that has antiviral and interferon-inducing activity. The purpose of this work is to study the effect of the XXV on the stimulation of the expression of toll-like receptor genes, interferons, and immunoregulatory cytokines in a macrophage-like cell model. In this study, real-time PCR methods were used to obtain data on the transcriptional activity of genes in macrophage-like cells. Stimulation of the genes of toll-like receptors TLR2, TLR3, TLR4, TLR7, TLR8, and TLR9 was detected. A high-fold increase in stimulation (from 6.5 to 16,000) of the expression of the TLR3 and TLR4 genes was detected after 4 h of exposure to the XXV. Increased activity of interferon (IFNA1, IFNA2, IFNB1, IFNK, and IFNλ1) genes with simultaneous stimulation of the expression of interferon receptor (IFNAR1 and IFNAR2) genes and signalling molecule (JAK1 and ISG15) genes was detected. Increased fold stimulation of the expression of the cytokine genes IL6, TNFA, IL12A, and IL12B was also observed. Thus, it is shown that the XXV is an activator of TLR genes of innate immunity, which trigger signalling mechanisms of pathogen "recognition" and lead to stimulation of the expression of genes of proinflammatory cytokines and interferons.
Collapse
Affiliation(s)
- Alexander Narovlyansky
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Alexander Pronin
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Vladislav Poloskov
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Alexander Sanin
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Marina Mezentseva
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Irina Fedyakina
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Irina Suetina
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Igor Zubashev
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Felix Ershov
- National Research Centre for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.P.); (A.S.); (M.M.); (I.F.); (I.S.); (I.Z.); (F.E.)
| | - Marina Filimonova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia; (M.F.); (V.S.); (I.V.)
| | - Valentina Surinova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia; (M.F.); (V.S.); (I.V.)
| | - Irina Volkova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia; (M.F.); (V.S.); (I.V.)
| | - Egor Bogdanov
- Faculty of Biotechnology, Lomonosov Moscow University of Fine Chemical Technology, Moscow 119571, Russia;
| |
Collapse
|
3
|
Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. MedComm (Beijing) 2024; 5:e549. [PMID: 38685971 PMCID: PMC11057423 DOI: 10.1002/mco2.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanyao Huang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Qi Zhan
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haoran Ding
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yi Li
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
4
|
Zheng H, Wu P, Bonnet PA. Recent Advances on Small-Molecule Antagonists Targeting TLR7. Molecules 2023; 28:molecules28020634. [PMID: 36677692 PMCID: PMC9865772 DOI: 10.3390/molecules28020634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is a class of pattern recognition receptors (PRRs) recognizing the pathogen-associated elements and damage and as such is a major player in the innate immune system. TLR7 triggers the release of pro-inflammatory cytokines or type-I interferons (IFN), which is essential for immunoregulation. Increasing reports also highlight that the abnormal activation of endosomal TLR7 is implicated in various immune-related diseases, carcinogenesis as well as the proliferation of human immunodeficiency virus (HIV). Hence, the design and development of potent and selective TLR7 antagonists based on small molecules or oligonucleotides may offer new tools for the prevention and management of such diseases. In this review, we offer an updated overview of the main structural features and therapeutic potential of small-molecule antagonists of TLR7. Various heterocyclic scaffolds targeting TLR7 binding sites are presented: pyrazoloquinoxaline, quinazoline, purine, imidazopyridine, pyridone, benzanilide, pyrazolopyrimidine/pyridine, benzoxazole, indazole, indole, and quinoline. Additionally, their structure-activity relationships (SAR) studies associated with biological activities and protein binding modes are introduced.
Collapse
Affiliation(s)
- Haoyang Zheng
- Faculty of Pharmacy, Montpellier University, 34093 Montpellier, France
| | - Peiyang Wu
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron IBMM, Ecole Nationale Supérieure de Chimie de Montpellier ENSCM, Montpellier University, Centre National de La Recherche Scientifique CNRS, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
5
|
Zhang Z, Trypsteen W, Blaauw M, Chu X, Rutsaert S, Vandekerckhove L, van der Heijden W, Dos Santos JC, Xu CJ, Swertz MA, van der Ven A, Li Y. IRF7 and RNH1 are modifying factors of HIV-1 reservoirs: a genome-wide association analysis. BMC Med 2021; 19:282. [PMID: 34781942 PMCID: PMC8594146 DOI: 10.1186/s12916-021-02156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Combination antiretroviral treatment (cART) cannot eradicate HIV-1 from the body due to the establishment of persisting viral reservoirs which are not affected by therapy and reinitiate new rounds of HIV-1 replication after treatment interruption. These HIV-1 reservoirs mainly comprise long-lived resting memory CD4+ T cells and are established early after infection. There is a high variation in the size of these viral reservoirs among virally suppressed individuals. Identification of host factors that contribute to or can explain this observed variation could open avenues for new HIV-1 treatment strategies. METHODS In this study, we conducted a genome-wide quantitative trait locus (QTL) analysis to probe functionally relevant genetic variants linked to levels of cell-associated (CA) HIV-1 DNA, CA HIV-1 RNA, and RNA:DNA ratio in CD4+ T cells isolated from blood from a cohort of 207 (Caucasian) people living with HIV-1 (PLHIV) on long-term suppressive antiretroviral treatment (median = 6.6 years). CA HIV-1 DNA and CA HIV-1 RNA levels were measured with corresponding droplet digital PCR (ddPCR) assays, and genotype information of 522,455 single-nucleotide variants was retrieved via the Infinium Global Screening array platform. RESULTS The analysis resulted in one significant association with CA HIV-1 DNA (rs2613996, P < 5 × 10-8) and two suggestive associations with RNA:DNA ratio (rs7113204 and rs7817589, P < 5 × 10-7). Then, we prioritized PTDSS2, IRF7, RNH1, and DEAF1 as potential HIV-1 reservoir modifiers and validated that higher expressions of IRF7 and RNH1 were accompanied by rs7113204-G. Moreover, RNA:DNA ratio, indicating relative HIV-1 transcription activity, was lower in PLHIV carrying this variant. CONCLUSIONS The presented data suggests that the amount of CA HIV-1 DNA and RNA:DNA ratio can be influenced through PTDSS2, RNH1, and IRF7 that were anchored by our genome-wide association analysis. Further, these observations reveal potential host genetic factors affecting the size and transcriptional activity of HIV-1 reservoirs and could indicate new targets for HIV-1 therapeutic strategies.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands.,Department of Genetics, University Medical Center Groningen, 9700RB, Groningen, the Netherlands.,Genomics Coordination Center, University Medical Center Groningen, 9700RB, Groningen, the Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Marc Blaauw
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands
| | - Xiaojing Chu
- Department of Genetics, University Medical Center Groningen, 9700RB, Groningen, the Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wouter van der Heijden
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, 9700RB, Groningen, the Netherlands.,Genomics Coordination Center, University Medical Center Groningen, 9700RB, Groningen, the Netherlands
| | - Andre van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands.
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands. .,Department of Genetics, University Medical Center Groningen, 9700RB, Groningen, the Netherlands. .,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany. .,TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
| |
Collapse
|
6
|
Yang X, Liu Y, Liu Y, Yang Q, Wu X, Huang X, Liu H, Cai W, Ma G. Medication therapy strategies for the coronavirus disease 2019 (COVID-19): recent progress and challenges. Expert Rev Clin Pharmacol 2020; 13:957-975. [PMID: 32746653 DOI: 10.1080/17512433.2020.1805315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The coronavirus disease 2019 (COVID-19) pandemic has spread globally since it outbroke in December 2019. The urgent pandemic presents an unprecedented challenge to develop and identify effective medication therapy strategies to combat the COVID-19. AREAS COVERED Here, we summarized and evaluated the current treatment drugs and regimens, and put forward the treatment recommendations, including using the potential repurposed or experimental drugs against COVID-19, e.g. chloroquine (CQ), hydroxychloroquine (HCQ), lopinavir/ritonavir (LPV/r), remdesivir (RDV), and favipiravir (FPV). We also analyzed the specific drugs and vaccines against SARS-CoV-2 ongoing development and formulated the comprehensive treatment regimens based on condition of patients, diseases and drugs as well as concomitant medications. EXPERT OPINION No drugs and vaccines have been proven to be particularly effective against SARS-CoV-2 up to now. The recommended comprehensive medication therapy strategies have already displayed favorable effect in the fight against COVID-19. Research should be focused on the development of anti-SARS-CoV-2 drugs and vaccines based on high-quality clinical trial evidence, treatment guidelines and expert consensus.
Collapse
Affiliation(s)
- Xiaolei Yang
- School of Pharmacy, Fudan University , Shanghai, P.R. China.,Minhang Hospital, Fudan University , Shanghai, P.R. China
| | - Ye Liu
- School of Pharmacy, Fudan University , Shanghai, P.R. China.,Minhang Hospital, Fudan University , Shanghai, P.R. China
| | - Yuping Liu
- School of Pharmacy, Fudan University , Shanghai, P.R. China
| | - Qing Yang
- School of Pharmacy, Fudan University , Shanghai, P.R. China
| | - Xubo Wu
- Minhang Hospital, Fudan University , Shanghai, P.R. China
| | - Xuan Huang
- School of Pharmacy, Fudan University , Shanghai, P.R. China
| | - Huijia Liu
- School of Pharmacy, Fudan University , Shanghai, P.R. China
| | - Weimin Cai
- School of Pharmacy, Fudan University , Shanghai, P.R. China
| | - Guo Ma
- School of Pharmacy, Fudan University , Shanghai, P.R. China
| |
Collapse
|