1
|
Cha JK, Park H, Kwon Y, Lee SM, Jang SG, Kwon SW, Lee JH. Synergizing breeding strategies via combining speed breeding, phenotypic selection, and marker-assisted backcrossing for the introgression of Glu-B1i in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1402709. [PMID: 38863547 PMCID: PMC11165042 DOI: 10.3389/fpls.2024.1402709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Wheat is a major food crop that plays a crucial role in the human diet. Various breeding technologies have been developed and refined to meet the increasing global wheat demand. Several studies have suggested breeding strategies that combine generation acceleration systems and molecular breeding methods to maximize breeding efficiency. However, real-world examples demonstrating the effective utilization of these strategies in breeding programs are lacking. In this study, we designed and demonstrated a synergized breeding strategy (SBS) that combines rapid and efficient breeding techniques, including speed breeding, speed vernalization, phenotypic selection, backcrossing, and marker-assisted selection. These breeding techniques were tailored to the specific characteristics of the breeding materials and objectives. Using the SBS approach, from artificial crossing to the initial observed yield trial under field conditions only took 3.5 years, resulting in a 53% reduction in the time required to develop a BC2 near-isogenic line (NIL) and achieving a higher recurrent genome recovery of 91.5% compared to traditional field conditions. We developed a new wheat NIL derived from cv. Jokyoung, a leading cultivar in Korea. Milyang56 exhibited improved protein content, sodium dodecyl sulfate-sedimentation value, and loaf volume compared to Jokyoung, which were attributed to introgression of the Glu-B1i allele from the donor parent, cv. Garnet. SBS represents a flexible breeding model that can be applied by breeders for developing breeding materials and mapping populations, as well as analyzing the environmental effects of specific genes or loci and for trait stacking.
Collapse
Affiliation(s)
- Jin-Kyung Cha
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Hyeonjin Park
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Seong-Gyu Jang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| |
Collapse
|
2
|
Hayashi K, Kawahara Y, Maeda H, Hayano-Saito Y. Comparative analyses of Stvb-allelic genes reveal japonica specificity of rice stripe resistance in Oryza sativa. BREEDING SCIENCE 2022; 72:333-342. [PMID: 36776443 PMCID: PMC9895804 DOI: 10.1270/jsbbs.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 06/18/2023]
Abstract
Rice stripe, a viral disease, causes widespread damage to japonica rice (Oryza sativa ssp. japonica). A rice stripe virus (RSV) bioassay revealed that many indica and japonica upland varieties exhibit resistance, whereas japonica paddy varieties are susceptible. However, the genetic background for this subspecies-dependent resistance is unclear. Herein, we focused on rice stripe resistance genes located at the Stvb locus. Three resistant alleles, Stvb-i (indica), Stvb (japonica upland), and Stvb-o (Oryza officinalis) were compared with the susceptible allele, stvb-j (japonica paddy). The expression of the resistance genes was higher than that of stvb-j. Sequence comparison revealed that the resistant and susceptible alleles had different 5'-end sequences and 61-bp element(s) in the fourth intron. The insertion of an LTR-retrotransposon modified the exon 1 sequence of stvb-j. We then developed four DNA markers based on gene structure information and genotyped resistant and susceptible varieties. The LTR-retrotransposon insertion was detected only in susceptible varieties. Resistant genotypes were primarily found in indica and upland japonica, whereas paddy japonica carried the susceptible genotype. Our results characterize the genetic differences associated with RSV resistance and susceptibility in O. sativa and provide insights on the application of DNA markers in rice stripe disease management.
Collapse
Affiliation(s)
- Keiko Hayashi
- Institute of Agrobiological Science, NARO, Tsukuba, Ibaraki 305-8604, Japan
| | | | - Hideo Maeda
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan
| | | |
Collapse
|
3
|
Lee C, Cheon KS, Shin Y, Oh H, Jeong YM, Jang H, Park YC, Kim KY, Cho HC, Won YJ, Baek J, Cha YS, Kim SL, Kim KH, Ji H. Development and Application of a Target Capture Sequencing SNP-Genotyping Platform in Rice. Genes (Basel) 2022; 13:genes13050794. [PMID: 35627177 PMCID: PMC9141132 DOI: 10.3390/genes13050794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022] Open
Abstract
The development of efficient, robust, and high-throughput SNP genotyping platforms is pivotal for crop genetics and breeding. Recently, SNP genotyping platforms based on target capture sequencing, which is very flexible in terms of the number of SNP markers, have been developed for maize, cassava, and fava bean. We aimed to develop a target capture sequencing SNP genotyping platform for rice. A target capture sequencing panel containing 2565 SNPs, including 1225 SNPs informative for japonica and 1339 SNPs informative for indica, was developed. This platform was used in diversity analysis of 50 rice varieties. Of the 2565 SNP markers, 2341 (91.3%) produced useful polymorphic genotype data, enabling the production of a phylogenetic tree of the 50 varieties. The mean number of markers polymorphic between any two varieties was 854. The platform was used for QTL mapping of preharvest sprouting (PHS) resistance in an F8 recombinant inbred line population derived from the cross Odae × Joun. A genetic map comprising 475 markers was constructed, and two QTLs for PHS resistance were identified on chromosomes 4 and 11. This system is a powerful tool for rice genetics and breeding and will facilitate QTL studies and gene mapping, germplasm diversity analysis, and marker-assisted selection.
Collapse
Affiliation(s)
- Chaewon Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Kyeong-Seong Cheon
- Division of Forest Tree Improvement and Biotechnology, Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Korea;
| | - Yunji Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
- Genecell Biotech Inc., Wanju, 55322, Korea
| | - Hyoja Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Young-Min Jeong
- Seed Industry Promotion Center, Korea Agriculture Technology Promotion Agency (KOAT), Gimje 54324, Korea;
| | - Hoon Jang
- CELEMICS, Seoul 08506, Korea; (H.J.); (Y.-C.P.)
| | | | - Kyung-Yun Kim
- INSILICOGEN, Yongin 16954, Korea; (K.-Y.K.); (H.-C.C.)
| | - Hang-Chul Cho
- INSILICOGEN, Yongin 16954, Korea; (K.-Y.K.); (H.-C.C.)
| | - Yong-Jae Won
- Cheorwon Branch, National Institute of Crop Science, Rural Development Administration (RDA), Cheorwon 24010, Korea;
| | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Young-Soon Cha
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Song-Lim Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
| | - Hyeonso Ji
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (C.L.); (Y.S.); (H.O.); (J.B.); (Y.-S.C.); (S.-L.K.); (K.-H.K.)
- Correspondence: ; Tel.: +82-63-238-4657
| |
Collapse
|
4
|
Ji H, Shin Y, Lee C, Oh H, Yoon IS, Baek J, Cha YS, Lee GS, Kim SL, Kim KH. Genomic Variation in Korean japonica Rice Varieties. Genes (Basel) 2021; 12:genes12111749. [PMID: 34828355 PMCID: PMC8623644 DOI: 10.3390/genes12111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
Next-generation sequencing technologies have enabled the discovery of numerous sequence variations among closely related crop varieties. We analyzed genome resequencing data from 24 Korean temperate japonica rice varieties and discovered 954,233 sequence variations, including 791,121 single nucleotide polymorphisms (SNPs) and 163,112 insertions/deletions (InDels). On average, there was one variant per 391 base-pairs (bp), a variant density of 2.6 per 1 kbp. Of the InDels, 10,860 were longer than 20 bp, which enabled conversion to markers resolvable on an agarose gel. The effect of each variant on gene function was predicted using the SnpEff program. The variants were categorized into four groups according to their impact: high, moderate, low, and modifier. These groups contained 3524 (0.4%), 27,656 (2.9%), 24,875 (2.6%), and 898,178 (94.1%) variants, respectively. To test the accuracy of these data, eight InDels from a pre-harvest sprouting resistance QTL (qPHS11) target region, four highly polymorphic InDels, and four functional sequence variations in known agronomically important genes were selected and successfully developed into markers. These results will be useful to develop markers for marker-assisted selection, to select candidate genes in map-based cloning, and to produce efficient high-throughput genome-wide genotyping systems for Korean temperate japonica rice varieties.
Collapse
|
5
|
Bharadwaj C, Tripathi S, Soren KR, Thudi M, Singh RK, Sheoran S, Roorkiwal M, Patil BS, Chitikineni A, Palakurthi R, Vemula A, Rathore A, Kumar Y, Chaturvedi SK, Mondal B, Shanmugavadivel PS, Srivastava AK, Dixit GP, Singh NP, Varshney RK. Introgression of "QTL-hotspot" region enhances drought tolerance and grain yield in three elite chickpea cultivars. THE PLANT GENOME 2021; 14:e20076. [PMID: 33480153 DOI: 10.1002/tpg2.20076] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/10/2020] [Indexed: 05/27/2023]
Abstract
With an aim of enhancing drought tolerance using a marker-assisted backcrossing (MABC) approach, we introgressed the "QTL-hotspot" region from ICC 4958 accession that harbors quantitative trait loci (QTLs) for several drought-tolerance related traits into three elite Indian chickpea (Cicer arietinum L.) cultivars: Pusa 372, Pusa 362, and DCP 92-3. Of eight simple sequence repeat (SSR) markers in the QTL-hotspot region, two to three polymorphic markers were used for foreground selection with respective cross-combinations. A total of 47, 53, and 46 SSRs were used for background selection in case of introgression lines (ILs) developed in genetic backgrounds of Pusa 372, Pusa 362, and DCP 92-3, respectively. In total, 61 ILs (20 BC3 F3 in Pusa 372; 20 BC2 F3 in Pusa 362, and 21 BC3 F3 in DCP 92-3), with >90% recurrent parent genome recovery were developed. Six improved lines in different genetic backgrounds (e.g. BGM 10216 in Pusa 372; BG 3097 and BG 4005 in Pusa 362; IPC(L4-14), IPC(L4-16), and IPC(L19-1) in DCP 92-3) showed better performance than their respective recurrent parents. BGM 10216, with 16% yield gain over Pusa 372, has been released as Pusa Chickpea 10216 by the Central Sub-Committees on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Ministry of Agriculture and Farmers Welfare, Government of India, for commercial cultivation in India. In summary, this study reports introgression of the QTL-hotspot for enhancing yield under rainfed conditions, development of several introgression lines, and release of Pusa Chickpea 10216 developed through molecular breeding in India.
Collapse
Affiliation(s)
- Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, Delhi, 110012, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, Delhi, 110012, India
| | - Khela R Soren
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, Uttar Pradesh, 208024, India
| | - Mahendar Thudi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Rajesh K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, Delhi, 110012, India
| | - Seema Sheoran
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, Delhi, 110012, India
- Present address: ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU campus, Ludhiana, Punjab, 141004, India
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Ramesh Palakurthi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Anilkumar Vemula
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Abhishek Rathore
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Yogesh Kumar
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, Uttar Pradesh, 208024, India
| | - Sushil K Chaturvedi
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, Uttar Pradesh, 208024, India
- Present address: Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, 284003, India
| | - Biswajit Mondal
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, Uttar Pradesh, 208024, India
| | | | - Avinash K Srivastava
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, Uttar Pradesh, 208024, India
| | - Girish P Dixit
- ICAR-All India Coordinated Research Project on Chickpea (AICRP-Chickpea), ICAR-IIPR, Kanpur, Uttar Pradesh, India
| | - Narendra P Singh
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, Uttar Pradesh, 208024, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| |
Collapse
|
6
|
Cheon KS, Jeong YM, Oh H, Oh J, Kang DY, Kim N, Lee E, Baek J, Kim SL, Choi I, Yoon IS, Kim KH, Won YJ, Cho YI, Han JH, Ji H. Development of 454 New Kompetitive Allele-Specific PCR (KASP) Markers for Temperate japonica Rice Varieties. PLANTS 2020; 9:plants9111531. [PMID: 33182649 PMCID: PMC7698039 DOI: 10.3390/plants9111531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/02/2022]
Abstract
Temperate japonica rice varieties exhibit wide variation in the phenotypes of several important agronomic traits, including disease resistance, pre-harvest sprouting resistance, plant architecture, and grain quality, indicating the presence of genes contributing to favorable agronomic traits. However, gene mapping and molecular breeding has been hampered as a result of the low genetic diversity among cultivars and scarcity of polymorphic DNA markers. Single nucleotide polymorphism (SNP)-based kompetitive allele-specific PCR (KASP) markers allow high-throughput genotyping for marker-assisted selection and quantitative trait loci (QTL) mapping within closely related populations. Previously, we identified 740,566 SNPs and developed 771 KASP markers for Korean temperate japonica rice varieties. However, additional markers were needed to provide sufficient genome coverage to support breeding programs. In this study, the 740,566 SNPs were categorized according to their predicted impacts on gene function. The high-impact, moderate-impact, modifier, and low-impact groups contained 703 (0.1%), 20,179 (2.7%), 699,866 (94.5%), and 19,818 (2.7%) SNPs, respectively. A subset of 357 SNPs from the high-impact group was selected for initial KASP marker development, resulting in 283 polymorphic KASP markers. After incorporation of the 283 markers with the 771 existing markers in a physical map, additional markers were developed to fill genomic regions with large gaps between markers, and 171 polymorphic KASP markers were successfully developed from 284 SNPs. Overall, a set of 1225 KASP markers was produced. The markers were evenly distributed across the rice genome, with average marker density of 3.3 KASP markers per Mbp. The 1225 KASP markers will facilitate QTL/gene mapping and marker-assisted selection in temperate japonica rice breeding programs.
Collapse
Affiliation(s)
- Kyeong-Seong Cheon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Young-Min Jeong
- Seed Industry Promotion Center, Foundation of Agri. Tech. Commercialization & Transfer (FACT), Gimje 54324, Korea;
| | - Hyoja Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Jun Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Do-Yu Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Nyunhee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Eungyeong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Song Lim Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Inchan Choi
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - In Sun Yoon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Yong Jae Won
- Cheorwon Branch, National Institute of Crop Science, Rural Development Administration (RDA), Cheorwon 24010, Korea;
| | - Young-il Cho
- Seed Business Team, Department of Seed Services, Foundation of Agri. Tech. Commercialization & Transfer (FACT), Iksan 54667, Korea;
| | - Jung-Heon Han
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
| | - Hyeonso Ji
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea; (K.-S.C.); (H.O.); (J.O.); (D.-Y.K.); (N.K.); (E.L.); (J.B.); (S.L.K.); (I.C.); (I.S.Y.); (K.-H.K.); (J.-H.H.)
- Correspondence:
| |
Collapse
|
7
|
Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M. Breeding and biotechnological interventions for trait improvement: status and prospects. PLANTA 2020; 252:54. [PMID: 32948920 PMCID: PMC7500504 DOI: 10.1007/s00425-020-03465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 05/06/2023]
Abstract
Present review describes the molecular tools and strategies deployed in the trait discovery and improvement of major crops. The prospects and challenges associated with these approaches are discussed. Crop improvement relies on modulating the genes and genomic regions underlying key traits, either directly or indirectly. Direct approaches include overexpression, RNA interference, genome editing, etc., while breeding majorly constitutes the indirect approach. With the advent of latest tools and technologies, these strategies could hasten the improvement of crop species. Next-generation sequencing, high-throughput genotyping, precision editing, use of space technology for accelerated growth, etc. had provided a new dimension to crop improvement programmes that work towards delivering better varieties to cope up with the challenges. Also, studies have widened from understanding the response of plants to single stress to combined stress, which provides insights into the molecular mechanisms regulating tolerance to more than one stress at a given point of time. Altogether, next-generation genetics and genomics had made tremendous progress in delivering improved varieties; however, the scope still exists to expand its horizon to other species that remain underutilized. In this context, the present review systematically analyses the different genomics approaches that are deployed for trait discovery and improvement in major species that could serve as a roadmap for executing similar strategies in other crop species. The application, pros, and cons, and scope for improvement of each approach have been discussed with examples, and altogether, the review provides comprehensive coverage on the advances in genomics to meet the ever-growing demands for agricultural produce.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|