1
|
García M, García-Benítez C, Ortego F, Farinós GP. Monitoring Insect Resistance to Bt Maize in the European Union: Update, Challenges, and Future Prospects. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:275-288. [PMID: 36610405 PMCID: PMC10125040 DOI: 10.1093/jee/toac154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 05/30/2023]
Abstract
Transgenic maize producing the Cry1Ab toxin of Bacillus thuringiensis (Bt maize) was approved for cultivation in the European Union (EU) in 1998 to control the corn borers Sesamia nonagrioides (Lefèbvre) and Ostrinia nubilalis (Hübner). In the EU since then, Cry1Ab is the only Bt toxin produced by Bt maize and Spain is the only country where Bt maize has been planted every year. In 2021, about 100,000 hectares of Bt maize producing Cry1Ab were cultivated in the EU, with Spain accounting for 96% and Portugal 4% of this area. In both countries, Bt maize represented less than 25% of all maize planted in 2021, with a maximum regional adoption of 64% Bt maize in northeastern Spain. Insect resistance management based on the high-dose/refuge strategy has been implemented in the EU since 1998. This has been accompanied by monitoring to enable early detection of resistance. The monitoring data from laboratory bioassays show no decrease in susceptibility to Cry1Ab had occurred in either pest as of 2021. Also, control failures have not been reported, confirming that Bt maize producing Cry1Ab remains effective against both pests. Conditions in the EU preventing approval of new genetically modified crops, including maize producing two or more Bt toxins targeting corn borers, may limit the future effectiveness of resistance management strategies.
Collapse
Affiliation(s)
| | | | - Félix Ortego
- Laboratory of Applied Entomology for Human and Plant Health, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | | |
Collapse
|
2
|
Li G, Ji T, Zhao S, Feng H, Wu K. High-Dose Assessment of Transgenic Insect-Resistant Maize Events against Major Lepidopteran Pests in China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3125. [PMID: 36432854 PMCID: PMC9699326 DOI: 10.3390/plants11223125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Lepidopteran pests present a key problem for maize production in China. In order to develop a new strategy for the pest control, the Chinese government has issued safety certificates for insect-resistant transgenic maize, but whether these transformation events can achieve high dose levels to major target pests is still unclear. In this paper, the transformation events of DBN9936 (Bt-Cry1Ab), DBN9936 × DBN9501 (Bt-Cry1Ab + Vip3A), Ruifeng 125 (Bt-Cry1Ab/Cry2Aj), and MIR162 (Bt-Vip3A) were planted in the Huang-huai-hai summer corn region of China to evaluate the lethal effects on major lepidopteran pests, Spodoptera frugiperda, Helicoverpa armigera, Ostrinia furnacalis, Conogethes punctiferalis, Mythimna separata, Leucania loreyi, and Athetis lepigone, using an artificial diet containing lyophilized Bt maize tissue at a concentration representing a 25-fold dilution of tissue. The results showed that the corrected mortalities of DBN9936 (Bt-Cry1Ab), DBN9936 × DBN9501 (Bt-Cry1Ab + Vip3A), Ruifeng 125 (Bt-Cry1Ab/Cry2Aj), and MIR162 (Bt-Vip3A) to the seven pests were in the ranges 53.80~100%, 62.98~100%, 57.09~100%, and 41.02~100%, respectively. In summary, the events of DBN9936, DBN9936 × DBN9501, and MIR162 reached high dose levels to S. frugiperda. DBN9936 × DBN9501 only at the R1 stage reached a high dose level to H. armigera. DBN9936, DBN9936 × DBN9501, and Ruifeng 125, at most growth stages, reached high dose levels to O. furnacalis, and these three events at some stages also reached high dose levels to A. lepigone. Ruifeng 125 presented a high dose level only to C. punctiferalis. However, no transformations reached high dose levels to either M. separata or L. loreyi. This study provides a support for the breeding of high-dose varieties to different target pests, the combined application of multiple genes and the commercial regional planting of insect-resistant transgenic maize in China.
Collapse
Affiliation(s)
- Guoping Li
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tingjie Ji
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongqiang Feng
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Van den Berg J, Prasanna BM, Midega CAO, Ronald PC, Carrière Y, Tabashnik BE. Managing Fall Armyworm in Africa: Can Bt Maize Sustainably Improve Control? JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1934-1949. [PMID: 34505143 DOI: 10.1093/jee/toab161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 05/28/2023]
Abstract
The recent invasion of Africa by fall armyworm, Spodoptera frugiperda, a lepidopteran pest of maize and other crops, has heightened concerns about food security for millions of smallholder farmers. Maize genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) is a potentially useful tool for controlling fall armyworm and other lepidopteran pests of maize in Africa. In the Americas, however, fall armyworm rapidly evolved practical resistance to maize producing one Bt toxin (Cry1Ab or Cry1Fa). Also, aside from South Africa, Bt maize has not been approved for cultivation in Africa, where stakeholders in each nation will make decisions about its deployment. In the context of Africa, we address maize production and use; fall armyworm distribution, host range, and impact; fall armyworm control tactics other than Bt maize; and strategies to make Bt maize more sustainable and accessible to smallholders. We recommend mandated refuges of non-Bt maize or other non-Bt host plants of at least 50% of total maize hectares for single-toxin Bt maize and 20% for Bt maize producing two or more distinct toxins that are each highly effective against fall armyworm. The smallholder practices of planting more than one maize cultivar and intercropping maize with other fall armyworm host plants could facilitate compliance. We also propose creating and providing smallholder farmers access to Bt maize that produces four distinct Bt toxins encoded by linked genes in a single transgene cassette. Using this novel Bt maize as one component of integrated pest management could sustainably improve control of lepidopteran pests including fall armyworm.
Collapse
Affiliation(s)
- Johnnie Van den Berg
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, 2520, South Africa
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi, 00601, Kenya
| | - Charles A O Midega
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, 2520, South Africa
- Poverty and Health Integrated Solutions, Kisumu, 40141, Kenya
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Gu J, Ye R, Xu Y, Yin Y, Li S, Chen H. A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Lohn AF, Trtikova M, Chapela I, Van den Berg J, du Plessis H, Hilbeck A. Transgene behavior in Zea mays L. crosses across different genetic backgrounds: Segregation patterns, cry1Ab transgene expression, insecticidal protein concentration and bioactivity against insect pests. PLoS One 2020; 15:e0238523. [PMID: 32911522 PMCID: PMC7482933 DOI: 10.1371/journal.pone.0238523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022] Open
Abstract
Brazil and South Africa, countries with economies in transition, are characterized by a dual agrarian structure co-occurring, sometimes, alongside in the same region. Large-scale commercial farming produces crops for export to global markets on the one hand, and small-scale farming, on the other hand, provides for subsistence and local markets. In both systems, maize (Zea mays) is a key crop for these two countries. For the commercial system, maize is a commodity crop while for the small-scale system it is the prime staple crop. In commercial systems, farmers predominantly grow genetically modified (GM) hybrid maize. In small-scale systems, farmers rely on open pollinated varieties (OPVs) and/or landraces and are largely dependent on seed saving systems. The aim of this study was to understand the relationship between transgene expression rates, the resulting concentrations of the transgene product (Bt protein) and its bioactivity in insect pests following transgene flow from GM hybrid maize into non-genetically modified, non-GM near-isogenic maize hybrid (ISO) and OPVs. We modeled segregation patterns and measured cry1Ab transgene expression (mRNA quantification), Cry1Ab protein concentration and pest survival. Two groups of F1, F2 crosses and backcrosses with GM, ISO and OPV maize varieties from Brazil and South Africa were used. Bioassays with the larvae of two lepidopteran maize pest species, Helicoverpa armigera and Spodoptera littoralis, were carried out. Overall, the cry1Ab transgene outcrossed effectively into the genetic backgrounds tested. The cry1Ab transgene was stably expressed in both ISO and OPV genetic backgrounds. Transgene introgression led to consistent, though highly variable, concentrations of Cry1Ab toxins that were similar to those observed in GM parental maize. Most crosses, but not all, suggested the expected Mendelian segregation pattern. Transgene expression rates were significantly higher than expected from purely Mendelian segregation in the South African crosses. In South African materials, ISO and OPV crosses produced significantly lower Cry1Ab concentrations compared to the GM parental maize. The Cry1Ab toxins from crosses were bioactive and induced mortality rates of ≥92.19% in H. armigera and ≥40.63% in S. littoralis after a period of only 4 days. However, no correlations were observed between the quantitation of mRNA for cry1Ab and the corresponding Cry1Ab protein concentrations, nor between the Cry1Ab concentrations and insect mortality rates across different genetic backgrounds. We therefore suggest that while transcription of the cry1Ab transgene reliably determines the presence of Cry1Ab protein, mRNA levels do not reflect, by themselves, the end Cry1Ab protein concentrations found in the plant. Because predictably high Cry1Ab concentrations are a key prerequisite for effective insect resistance management (IRM) programs, this observation raises questions about the effectiveness of such programs in scenarios with complex crop genetic backgrounds. On the other hand, confirmed bioactivity in all crosses should be expected to impact small farmer's selection behavior, unknowingly favoring the insecticidal trait. This may lead to a fixation of the trait in the wider population, and may influence the genetic diversity of varieties maintained by small-scale farmers.
Collapse
Affiliation(s)
- André Felipe Lohn
- Plant Ecological Genetics, Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- * E-mail:
| | - Miluse Trtikova
- Plant Ecological Genetics, Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Ignacio Chapela
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, United States of America
| | - Johnnie Van den Berg
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hannalene du Plessis
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Angelika Hilbeck
- Plant Ecological Genetics, Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|