1
|
Effect of C1q/TNF-Related Protein 9 on Coronary Artery Calcification: An Observational Study. J Cardiovasc Dev Dis 2022; 9:jcdd9100313. [PMID: 36286265 PMCID: PMC9604104 DOI: 10.3390/jcdd9100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Coronary artery calcification (CAC) increases the risk of acute coronary syndrome. This study examined the correlation between C1q/TNF-related protein 9 (CTRP9) and CAC and explored CTRP9 as a biomarker for prognosis. We divided 275 patients with coronary heart disease into four groups. In order to balance the baseline confounding factors, propensity score matching (PSM) was performed to match CAC patients with non-CAC patients in a 1:1 ratio. Optical coherence tomography (OCT) calcification scoring was performed in 126 patients with CAC. Moreover, 140 patients who underwent OCT were followed-up for 9 months for analysis of the correlation between CTRP9 levels and clinical prognosis. Based on OCT calcification scores, 126 patients with CAC were divided into the 0–2 and 3–4 groups. Plasma CTRP9 levels were significantly lower in the type 2 diabetes mellitus (T2DM), CAC and CAC with T2DM groups than in the control group. CTRP9 played roles as a protective factor and potential predictor in CAC severity. The AUC of the OCT calcification score 3–4 group predicted by the plasma CTRP9 level was 0.766. During the follow-up period, the cumulative event-free survival rate was significantly lower in the low-level CTRP9 (L-CTRP9) group than in the high-level (H-CTRP9) group, and the incidence of major endpoint events was significantly higher in the L-CTRP9 group than in the H-CTRP9 group. CTRP9 can be a valuable biomarker for CAC occurrence and severity and can predict patients’ clinical prognosis.
Collapse
|
2
|
Zhang L, Ding H, Shi Y, Zhang D, Yang X. CTRP9 decreases high glucose‑induced trophoblast cell damage by reducing endoplasmic reticulum stress. Mol Med Rep 2022; 25:185. [PMID: 35348185 PMCID: PMC8985207 DOI: 10.3892/mmr.2022.12701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
C1q/TNF-α-related protein 9 (CTRP9) is downregulated in gestational diabetes mellitus (GDM) and may exert a protective effect against GDM, although its mechanism of action is yet to be elucidated. To investigate the specific role of CTRP9 in GDM, the human placental trophoblast cell line HTR8/SVneo was treated with high glucose (HG) to simulate the environment of GDM in vitro. The effects of CTRP9 on the HTR8/SVneo cells and endoplasmic reticulum (ER) stress were analyzed before and after CTRP9 overexpression using reverse transcription-quantitative PCR and western blotting. The results obtained demonstrated that CTRP9 alleviated ER stress in the trophoblast cell line. After treating with the ER-stress inducer tunicamycin, cell viability was investigated by performing Cell Counting Kit-8, TUNEL and western blotting assays, which revealed that CTRP9 increased the activity of HTR8/SVneo cells induced by HG through the alleviation of ER stress. Subsequently, ELISA and western blotting assay results demonstrated that CTRP9 inhibited HG-induced inflammation of the HTR8/SVneo cells by the reduction in ER stress. Finally, the detection of reactive oxygen species, nitric oxide (NO) synthase and NO levels confirmed that CTRP9 inhibited the oxidative stress of HTR8/SVneo cells induced by HG through the reduction of ER stress. Collectively, the results of the present study suggested that CTRP9 may decrease trophoblast cell damage caused by HG through the suppression of ER stress, and therefore, CTRP9 may potentially be a therapeutic target in the treatment of GDM.
Collapse
Affiliation(s)
- Lianxiao Zhang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yubo Shi
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Duoyi Zhang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xue Yang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
3
|
Guan H, Wang Y, Li X, Xiang A, Guo F, Fan J, Yu Q. C1q/Tumor Necrosis Factor-Related Protein 9: Basics and Therapeutic Potentials. Front Physiol 2022; 13:816218. [PMID: 35370782 PMCID: PMC8971810 DOI: 10.3389/fphys.2022.816218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 01/19/2023] Open
Abstract
C1q/tumor necrosis factor-related protein 9 (CTRP9) is a newly discovered adipokine that is the closest paralog of adiponectin. Proteolytic cleavage of CTRP9 leads to the release of the globular domain (gCTRP9), which serves as the major circulating subtype. After binding with adiponectin receptor 1 (AdipoR1) and N-cadherin, CTRP9 activates various signaling pathways to regulate glucose and lipid metabolism, vasodilation and cell differentiation. Throughout human development and adult life, CTRP9 controls many biological phenomena. simultaneously, abnormal gene or protein expression of CTRP9 is accompanied by a wide range of human pathological phenomena. In this review, we briefly introduce CTRP9 and its associated signaling pathways and physiological functions, which may be helpful in the understanding of the occurrence of diseases. Moreover, we summarize the broader research prospects of CTRP9 and advances in therapeutic intervention. In recent years, CTRP9 has attracted extensive attention due to its role in the pathogenesis of various diseases, providing further avenues for its exploitation as a potential biomarker or therapeutic target.
Collapse
Affiliation(s)
- Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yanli Wang
- Department of Pathology, Xi’an Medical University, Xi’an, China
| | - Xiangyu Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Aoqi Xiang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Fengwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianglin Fan
- Department of Pathology, Xi’an Medical University, Xi’an, China
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medical Sciences, University of Yamanashi, Chuo, Japan
- *Correspondence: Jianglin Fan,
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Qi Yu,
| |
Collapse
|
4
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
5
|
Wu PY, Lee SY, Chang KV, Chao CT, Huang JW. Gender-Related Differences in Chronic Kidney Disease-Associated Vascular Calcification Risk and Potential Risk Mediators: A Scoping Review. Healthcare (Basel) 2021; 9:979. [PMID: 34442116 PMCID: PMC8394860 DOI: 10.3390/healthcare9080979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular calcification (VC) involves the deposition of calcium apatite in vascular intima or media. Individuals of advanced age, having diabetes mellitus or chronic kidney disease (CKD) are particularly at risk. The pathogenesis of CKD-associated VC evolves considerably. The core driver is the phenotypic change involving vascular wall constituent cells toward manifestations similar to that undergone by osteoblasts. Gender-related differences are observed regarding the expressions of osteogenesis-regulating effectors, and presumably the prevalence/risk of CKD-associated VC exhibits gender-related differences as well. Despite the wealth of data focusing on gender-related differences in the risk of atherosclerosis, few report whether gender modifies the risk of VC, especially CKD-associated cases. We systematically identified studies of CKD-associated VC or its regulators/modifiers reporting data about gender distributions, and extracted results from 167 articles. A significantly higher risk of CKD-associated VC was observed in males among the majority of original investigations. However, substantial heterogeneity exists, since multiple large-scale studies yielded neutral findings. Differences in gender-related VC risk may result from variations in VC assessment methods, the anatomical segments of interest, study sample size, and even the ethnic origins of participants. From a biological perspective, plausible mediators of gender-related VC differences include body composition discrepancies, alterations involving lipid profiles, inflammatory severity, diversities in matrix Gla protein (MGP), soluble Klotho, vitamin D, sclerostin, parathyroid hormone (PTH), fibroblast growth factor-23 (FGF-23), and osteoprotegerin levels. Based on our findings, it may be inappropriate to monotonously assume that male patients with CKD are at risk of VC compared to females, and we should consider more background in context before result interpretation.
Collapse
Affiliation(s)
- Patrick Yihong Wu
- School of Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Szu-Ying Lee
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County 640, Taiwan; (S.-Y.L.); (J.-W.H.)
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
| | - Chia-Ter Chao
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County 640, Taiwan; (S.-Y.L.); (J.-W.H.)
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| |
Collapse
|